天行健 君子当自强而不息

Working with skeletal animation

Working with skeletal animation(8)      摘要: As shown in Figure 4.5, the SkeletalAnim mesh demonstrates what you learned in this chapter by loading a skinned mesh (the Tiny.x mesh provided in the DirectX SDK samples) and rendering it to the display. 
 
Working with skeletal animation(7)      摘要: When your skeletal structure is in the pose you desire, it's time to update (or rebuild) the skinned mesh to match. Before you rebuild the skinned mesh, you must make sure you have constructed the secondary mesh container and updated the frame hierarchy. To review how to construct the mesh container, consult the "Creating a Secondary Mesh Container" section earlier in this chapter. To refresh your memory about how to update the frame hierarchy, review the "Updating the Hierarchy" section earlier  
 
Working with skeletal animation(6)      摘要: If you peruse an .X file, you might notice some similarities between the Frame data objects and the SkinWeights objects. For every bone in your skeletal structure, there is a matching SkinWeights object embedded inside a Mesh object that contains the name of a Frame object (or a reference to a Frame object). That's right−each bone is named after its corresponding Frame data object!  
 
Working with skeletal animation(5)      摘要: Loading a skinned mesh from an .X file is much like loading a standard mesh. Using a custom .X parser, you must enumerate your .X file objects using ParseObject. When it comes to processing a Mesh object, instead of calling the D3DXLoadMeshFromXof function to load the mesh data, you call the D3DXLoadSkinMeshFromXof function, which takes one additional parameter−a pointer to an ID3DXSkinInfo object. Check out the D3DXLoadSkinMeshFromXof prototype to see what I mean.  
 
Working with skeletal animation(4)      摘要: In the first half of this chapter, you learned how to manipulate a hierarchy of bones that forms the basis of skeletal animation. That's all fine and dandy, but playing with imaginary bones isn't going to cut the mustard. Your game's players need to see all your hard work in the form of rendered meshes, which is where skinned meshes come in.  
 
Working with skeletal animation(3)      摘要: After you have loaded the bone hierarchy, you can manipulate it. To modify the orientation of a bone, you first need to locate its respective frame structure by creating a function that recursively searches the frames for a specific bone name. Once it is found, a pointer to the frame is provided so you can directly access the frame's transformation matrix. The recursive search function might look something like this:  
 
Working with skeletal animation(2)      摘要: Not to beat a dead horse (why would I do a horrible thing like that?), but I want to quickly review how to load a frame hierarchy from an .X file.

For your frame hierarchy you should use the D3DXFRAME structure (or the D3DXFRAME_EX structure). As I mentioned earlier in this chapter, the D3DXFRAME structure (or the derived D3DXFRAME_EX structure) contains two pointers that you use to create the frame hierarchy−pFrameSibling and pFrameFirstChild. Your job is to link each frame you load fr  
 
Working with skeletal animation(1)      摘要: Skeletal animation−two words that bring to mind thoughts of B−rate horror movies in which the dead have risen from the grave to stalk the living. However, those two words mean something entirely different to programmers. If you're like me, this topic gives you more tingles down your spine than any cheesy horror movie ever could. 

posted on 2008-04-23 20:26 lovedday 阅读(434) 评论(0)  编辑 收藏 引用


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


公告

导航

统计

常用链接

随笔分类(178)

3D游戏编程相关链接

搜索

最新评论