天行健 君子当自强而不息

Working with skeletal animation(1)

Taking on Skeletal Animation

Skeletal animation−two words that bring to mind thoughts of B−rate horror movies in which the dead have risen from the grave to stalk the living. However, those two words mean something entirely different to programmers. If you're like me, this topic gives you more tingles down your spine than any cheesy horror movie ever could.

Skeletal animation is quickly becoming the animation technique of choice for programmers because it is quick to process and it produces incredible results. You can animate every detail of a character using skeletal animation. It gives you control of every aspect of the character's body, from the wrinkles in his skin to the bulges in his muscles. You can use every joint, bone, and muscle to deform the shape of your character's meshes.

Think of skeletal animation like this: Your body (or at least your skin) is a mesh, complete with an underlying set of bones. As your muscles push, pull, and twist your bones, your body changes shape to match. Instead of thinking of the muscles changing the shape of your body, think of the bones altering the rotation of each body part.

If you lift your arm your shoulder rotates, which in turn causes your entire arm to rotate and your skin to change shape. Your body (the mesh) changes shape to accommodate the changes in the bones. Skeletal animation works the same way. As the underlying skeletal structure changes orientation from the rotating of the joints, the overlaid mesh (appropriately called a skinned mesh) changes form to match.

As you can see, there are two separate entities to deal with when you are working with skeletal animation−the skeletal structure and the skinned mesh. Take a closer look at each entity in more detail to see how they work in unison, starting with the skeletal structure.

 

Using Skeletal Structures and Bone Hierarchies

The skeletal structure, as you can imagine, is a series of connected bones that form a hierarchy (a bone hierarchy, to be exact). One bone, called the root bone, forms the pivotal point for the entire skeletal structure. All other bones are attached to the root bone, either as child or sibling bones.

The word "bone" refers to a frame−of−reference object (a frame object, which is represented in DirectX by the D3DXFRAME structure or a Frame template inside .X files). If you were to examine the D3DXFRAME structure, you would indeed find the linked list pointers (D3DXFRAME::pFrameSibling and D3DXFRAME::pFrameFirstChild) that form the hierarchy. The pFrameSibling pointer links one bone to another on the same level in the hierarchy, whereas the pFrameFirstChild pointer links one bone to another as a child bone, which is one level lower in the hierarchy.

Generally, you would use a 3D−modeling package to create these skeletal structures for your projects. Exporting the bone hierarchy in the form of an .X file is a perfect example. Microsoft has released exporters for 3D Studio Max and Maya that allow you to export skeletal and animation data into .X files, and many modeling programs have the same exporting capabilities. I'll assume you have a program that will export these hierarchies to an .X file for you.

You'll find a number of things inside an .X file that contains skeletal animation data. First (and most important at this point), you'll find a hierarchy of Frame templates, which is your bone hierarchy in disguise.

Now let me show you some contents from .x file named with tiniy.x:

xof 0303txt 0032

template Mesh
{
    
<3D82AB44-62DA-11CF-AB39-0020AF71E433>
    DWORD nVertices;
    array Vector vertices[nVertices];
    DWORD nFaces;
    array MeshFace faces[nFaces];
    []
}

template MeshFace
{
    
< 3D82AB5F-62DA-11cf-AB39-0020AF71E433 >
    DWORD nFaceVertexIndices;
    array DWORD faceVertexIndices[nFaceVertexIndices];


template MeshNormals
{
    
< F6F23F43-7686-11cf-8F52-0040333594A3 >
    DWORD nNormals;
    array Vector normals[nNormals];
    DWORD nFaceNormals;
    array MeshFace faceNormals[nFaceNormals];


template MeshTextureCoords
{
    
< F6F23F40-7686-11cf-8F52-0040333594A3 >
    DWORD nTextureCoords;
    array Coords2d textureCoords[nTextureCoords] ;


template Coords2d
{
    
< F6F23F44-7686-11cf-8F52-0040333594A3 >
    
float u;
    
float v;
}

template VertexDuplicationIndices {
 
<b8d65549-d7c9-4995-89cf-53a9a8b031e3>
 DWORD nIndices;
 DWORD nOriginalVertices;
 array DWORD indices[nIndices];
}

template MeshMaterialList
{
    
< F6F23F42-7686-11CF-8F52-0040333594A3 >
    DWORD nMaterials;
    DWORD nFaceIndexes;
    array DWORD faceIndexes[nFaceIndexes];
    [Material 
<3D82AB4D-62DA-11CF-AB39-0020AF71E433>]


template Material
{
    
< 3D82AB4D-62DA-11CF-AB39-0020AF71E433 >
    ColorRGBA faceColor;
    FLOAT power;
    ColorRGB specularColor;
    ColorRGB emissiveColor;
    []


template ColorRGBA
{
    
< 35FF44E0-6C7C-11cf-8F52-0040333594A3 >
    
float red;
    
float green;
    
float blue;
    
float alpha;


template XSkinMeshHeader {
 
<3cf169ce-ff7c-44ab-93c0-f78f62d172e2>
 WORD nMaxSkinWeightsPerVertex;
 WORD nMaxSkinWeightsPerFace;
 WORD nBones;
}

template SkinWeights {
 
<6f0d123b-bad2-4167-a0d0-80224f25fabb>
 STRING transformNodeName;
 DWORD nWeights;
 array DWORD vertexIndices[nWeights];
 array FLOAT weights[nWeights];
 Matrix4x4 matrixOffset;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Frame Scene_Root {
 
 FrameTransformMatrix {
  
1.000000,0.000000,0.000000,0.000000,
  
0.000000,1.000000,0.000000,0.000000,
  
0.000000,0.000000,1.000000,0.000000,
  
0.000000,0.000000,0.000000,1.000000;;
 }

 Frame body {
  
  FrameTransformMatrix {
   
1.278853,0.000000,-0.000000,0.000000,
   
0.000000,0.000000,1.123165,0.000000,
   
0.000000,-1.470235,0.000000,0.000000,
   
0.135977,2.027985,133.967667,1.000000;;
  }

  Frame {

   FrameTransformMatrix {
    
1.000000,-0.000000,-0.000000,0.000000,
    
-0.000000,1.000000,0.000000,0.000000,
    
-0.000000,0.000000,1.000000,0.000000,
    
-0.142114,0.000023,-49.556850,1.000000;;
   }

   Mesh {
    
4432;            // nVertices: Number of vertices.
    
    
-34.720058;-12.484819;48.088928;,  // vertices[nVertices]: Array of vertices  
 
    
6841;            // nFaces: Number of faces
    
    
3;61,0,4431;;    // faces[nFaces]: Array of faces, each of type MeshFace

    MeshNormals {
     
4432;            // nNormals: Number of normals  
     
     
-0.914875;-0.152402;-0.373869;;    // normals[nNormals]: Array of normals
     
     
6841;            // nFaceNormals: Number of face normals, equal to nFaces in Mesh.
     
     
3;61,0,4431;;    // MeshFace faceNormals[nFaceNormals]:  Array of mesh face normals
    }

    MeshTextureCoords {
     
4432;                    // nTextureCoords: Number of texture coordinates
     
     
0.551922;0.238188;;    // Coords2d textureCoords[nTextureCoords]: Array of 2D texture coordinates
    }

    VertexDuplicationIndices {
     
4432;        // nIndices: Number of vertex indices. This is the number of vertices in the mesh. 
     3420;        // nOriginalVertices: Number of vertices in the mesh before any duplication occurs. 
     
     
0,            // The value indices[n] holds the vertex index that vertex[n] in the vertex array for the mesh 
     1,            // would have had if no duplication had occurred. Indices in this array that are the same, 
     2,            // therefore, indicate duplicate vertices. 
     
     
3418,
     
3419,
     
     
1,
     
62,
     
11,
     
     
3419;
    }

    MeshMaterialList {
     
1;            // nMaterials: A DWORD. The number of materials     
     6841;        // nFaceIndexes: A DWORD. The number of indices.
     
     
0,            // faceIndexes[nFaceIndexes]: An arrray of DWORDs containing the face indices
     
     
0;

     Material {
      
1.000000;1.000000;1.000000;1.000000;;    // faceColor: Face color. A ColorRGBA template.
      0.000000;                                // power: Material specular color exponent.
      1.000000;1.000000;1.000000;;            // specularColor: Material specular color. A ColorRGB template. 
      0.000000;0.000000;0.000000;;            // emissiveColor: Material emissive color. A ColorRGB template.

      TextureFilename {
         
"Tiny_skin.bmp";
      }
     }
    }

    XSkinMeshHeader {
     
2;        // nMaxSkinWeightsPerVertex: Maximum number of transforms that affect a vertex in the mesh
     4;        // nMaxSkinWeightsPerFace: Maximum number of unique transforms that affect the three vertices of any face
     35;    // nBones: Number of bones that affect vertices in this mesh
    }

    SkinWeights {
     
"Bip01_R_UpperArm";    // transformNodeName
     156;                    // nWeights: the number of vertices affected by this bone
     
     
0,                        // vertexIndices[nWeights]: the vertices influenced by this bone
     3449,
     
     
1738;
     
     
0.605239,                // weights[nWeights]: the weights for each of the vertices influenced by this bone
     
     
0.979129;
     
     
// matrixOffset: The matrix matrixOffset transforms the mesh vertices to the space of the bone. 
     
// When concatenated to the bone's transform, this provides the world space coordinates of the mesh 
     
// as affected by the bone. 
     -0.941743,-0.646748,0.574719,0.000000,    
     
-0.283133,-0.461979,-0.983825,0.000000,
     
0.923060,-1.114919,0.257891,0.000000,
     
-65.499557,30.497688,12.852692,1.000000;;
    }   

    

    SkinWeights {
     
"Bip01_Head";    // transformNodeName
     1955;            // nWeights: the number of vertices affected by this bone

     
1746,            // vertexIndices[nWeights]: the vertices influenced by this bone
     
     
3417;

     
1.000000,        // weights[nWeights]: the weights for each of the vertices influenced by this bone
     
     
1.000000;

     
// matrixOffset: The matrix matrixOffset transforms the mesh vertices to the space of the bone. 
     
// When concatenated to the bone's transform, this provides the world space coordinates of the mesh 
     
// as affected by the bone. 
     0.000000,-0.000002,1.278853,0.000000,
     
1.112235,-0.156313,-0.000000,0.000000,
     
0.204616,1.455927,0.000002,0.000000,
     
-61.950306,-62.105236,-0.142288,1.000000;;
    }
   }    
// Mesh
  }        // frame
 }        // Body


 Frame Box01 {  

  FrameTransformMatrix {
   
-1.000000,0.000000,-0.000000,0.000000,
   
-0.000000,0.000000,1.000000,0.000000,
   
0.000000,1.000000,0.000000,0.000000,
   
-88.696747,-246.341751,858.815247,1.000000;;
  }

  Frame Bip01 {
   
   FrameTransformMatrix {
    
0.186552,-0.974653,0.123489,0.000000,
    
0.982171,0.187991,0.000000,0.000000,
    
-0.023215,0.121288,0.992346,0.000000,
    
-88.977890,-857.346008,247.541595,1.000000;;
   }
 }
 
 
}

 

You should find a standard Mesh data object embedded in the Frame data object hierarchy. The Mesh data object contains information about your skeletal animation object and the bones used in your skeletal structure. That's right−the Frame data object and the Mesh object both contain information about your skeletal structure! Whereas the Frame objects define the actual hierarchy, the Mesh object defines which frames represent the bones.

For now, however, the importance of the bone data is irrelevant. Because the bones depend on the frame hierarchy, it's important to concentrate solely on the frames at this point. You simply need to load the hierarchy (from an .X file, for example) and set it up for later use. Read on to see how to load hierarchies from .X.


posted on 2008-04-23 16:52 lovedday 阅读(658) 评论(1)  编辑 收藏 引用

评论

# re: Working with skeletal animation(1) 2008-10-11 01:00 sky11811

呵呵呵 大段的贴书本啊 有意思吗 我还以为你写的呢
  回复  更多评论   


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


公告

导航

统计

常用链接

随笔分类(178)

3D游戏编程相关链接

搜索

最新评论