天行健 君子当自强而不息

Timing in Animation and Movement(6)

Creating In−Game Cinematic Sequences

Using time−based animation is crucial to achieving smooth playback, but what good could using time−based movement possibly do? Sure, moving a few objects around a set path is neat, but is that all you can do? The answer is a resounding no! There's much more you can do with time−based movement, including creating in−game cinematic sequences, like those from games such as Silicon Knights' Eternal Darkness: Sanity's Requiem In Eternal Darkness, the player is treated to animation sequences that play out using the game's 3D engine.

To use a cinematic camera, you can rely on the techniques you read about earlier in this chapter, and you can use the pre−calculated animation sequences, it's only a matter of plotting out the path that your camera will follow over time. Mix that with a complete
pre−calculated animation, and you've got yourself a complete in−game cinematic engine!

Rather than reiterate what you already saw in this chapter, I'll leave it up to you to check out the Cinematic demo, which shows a small cinematic sequence. In a nutshell, the demo merely loads a series of keys (using the .X path parser class) that represent the paths the camera follows. In every frame, the position of the camera is calculated using the keys, and the viewport is oriented. Then the pre−calculated animation is updated and the entire scene is rendered.

As shown in Figure 2.12, you get to see how complex routes can be applied to cameras in order to traverse a 3D scene in real time. This technique of moving a camera is perfect to use for an in−game cinematic system.

Figure 2.12: The cinematic camera demo adds a moving camera to the Route demo.

 

Route.x:

xof 0303txt 0032
template Path {
<F8569BED-53B6-4923-AF0B-59A09271D556>
DWORD Type; // 0=straight, 1=curved
Vector Start;
Vector Point1;
Vector Point2;
Vector End;
}
template Route {
<18AA1C92-16AB-47a3-B002-6178F9D2D12F>
DWORD NumPaths;
array Path Paths[NumPaths];
}
Route Robot {
5; // 5 paths
  0; // Straight path type
0.0, 10.0, 0.0; // Start
0.0, 0.0, 0.0; // Unused
0.0, 0.0, 0.0; // Unused
0.0, 10.0, 150.0;, // End
  1; // Curved path type
0.0, 10.0, 150.0; // Start
75.0, 10.0, 150.0; // Point1
150.0, 10.0, 75.0; // Point2
150.0, 10.0, 0.0;, // End
  1; // Curved path type
150.0, 10.0, 0.0; // Start
150.0, 10.0, -75.0; // Point1
75.0, 10.0, -150.0; // Point2
0.0, 10.0, -150.0;, // End
  0; // Straight path type
0.0, 10.0, -150.0; // Start
0.0, 0.0, 0.0; // Unused
0.0, 0.0, 0.0; // Unused
-150.0, 10.0, 75.0;, // End
  0; // Straight path type
-150.0, 10.0, 75.0; // Start
0.0, 10.0, 0.0; // Unused
0.0, 10.0, 0.0; // Unused
0.0, 10.0, 0.0;; // End
}
Route Camera {
4; // 4 paths
  1;  // Curved path type
0.0, 80.0, 300.0; // Start
150.0, 80.0, 300.0; // Point1
300.0, 80.0, 150.0; // Point2
300.0, 80.0, 0.0;, // End
  1;  // Curved path type
300.0, 80.0, 0.0; // Start
300.0, 80.0, -150.0; // Point1
151.0, 80.0, -300.0; // Point2
0.0, 80.0, -300.0;, // End
  1;  // Curved path type
0.0, 80.0, -300.0; // Start
-150.0, 80.0, -300.0; // Point1
-300.0, 80.0, -150.0; // Point2
-300.0, 80.0, 0.0;, // End
  1;  // Curved path type
-300.0, 80.0, 0.0; // Start
-300.0, 80.0, 150.0; // Point1
-150.0, 80.0, 300.0; // Point2
0.0, 80.0, 300.0;; // End
}
Route Target {
5; // 5 paths
  0; // Straight path type
0.0, 10.0, 0.0; // Start
0.0, 0.0, 0.0; // Unused
0.0, 0.0, 0.0; // Unused
0.0, 10.0, 150.0;, // End
  1; // Curved path type
0.0, 10.0, 150.0; // Start
75.0, 10.0, 150.0; // Point1
150.0, 10.0, 75.0; // Point2
150.0, 10.0, 0.0;, // End
  1; // Curved path type
150.0, 10.0, 0.0; // Start
150.0, 10.0, -75.0; // Point1
75.0, 10.0, -150.0; // Point2
0.0, 10.0, -150.0;, // End
  0; // Straight path type
0.0, 10.0, -150.0; // Start
0.0, 0.0, 0.0; // Unused
0.0, 0.0, 0.0; // Unused
-150.0, 10.0, 75.0;, // End
  0; // Straight path type
-150.0, 10.0, 75.0; // Start
0.0, 10.0, 0.0; // Unused
0.0, 10.0, 0.0; // Unused
0.0, 10.0, 0.0;; // End
}

WinMain.cpp:

#include <windows.h>
#include 
<d3d9.h>
#include 
<d3dx9.h>
#include 
"Direct3D.h"
#include 
"route.h"

struct sBackdropVertex
{
    
float x, y, z, rhw;
    
float u, v;        
};

#define BACKDROP_FVF (D3DFVF_XYZRHW | D3DFVF_TEX1)

////////////////////////////////////////////////////////////////////////////////////////////////

IDirect3D9
*                g_d3d;
IDirect3DDevice9
*        g_device;
IDirect3DVertexBuffer9
*    g_backdrop_vb;
IDirect3DTexture9
*        g_backdrop_texture;
D3DXMESHCONTAINER_EX
*    g_robot_mesh_container;
D3DXMESHCONTAINER_EX
*    g_ground_mesh_container;

cXRouteParser            g_route_parser;

D3DXVECTOR3 g_robot_pos, g_robot_last_pos;    

const char CLASS_NAME[] = "CinematicClass";
const char CAPTION[]    = "Cinematic Demo";

////////////////////////////////////////////////////////////////////////////////////////////////

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);

bool do_init(HWND hwnd);
void do_shutdown();
void do_frame();


//////////////////////////////////////////////////////////////////////////////////////////////

int PASCAL WinMain(HINSTANCE inst, HINSTANCE, LPSTR, int cmd_show)
{      
    CoInitialize(NULL);    
// Initialize the COM system

    
// Create the window class here and register it

    WNDCLASSEX win_class;  

    win_class.cbSize        
= sizeof(win_class);
    win_class.style         
= CS_CLASSDC;
    win_class.lpfnWndProc   
= window_proc;
    win_class.cbClsExtra    
= 0;
    win_class.cbWndExtra    
= 0;
    win_class.hInstance     
= inst;
    win_class.hIcon         
= LoadIcon(NULL, IDI_APPLICATION);
    win_class.hCursor       
= LoadCursor(NULL, IDC_ARROW);
    win_class.hbrBackground 
= NULL;
    win_class.lpszMenuName  
= NULL;
    win_class.lpszClassName 
= CLASS_NAME;
    win_class.hIconSm       
= LoadIcon(NULL, IDI_APPLICATION);

    
if(!RegisterClassEx(&win_class))
        
return -1;

    
// Create the main window
    HWND hwnd = CreateWindow(CLASS_NAME, CAPTION, WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
                             
00640480, NULL, NULL, inst, NULL);

    
if(hwnd == NULL)
        
return -1;

    ShowWindow(hwnd, cmd_show);
    UpdateWindow(hwnd);

    
// Call init function and enter message pump
    if(do_init(hwnd)) 
    {
        MSG msg;    
        ZeroMemory(
&msg, sizeof(MSG));

        
// Start message pump, waiting for user to exit
        while(msg.message != WM_QUIT) 
        {
            
if(PeekMessage(&msg, NULL, 00, PM_REMOVE)) 
            {
                TranslateMessage(
&msg);
                DispatchMessage(
&msg);
            }
      
            do_frame();    
// Render a single frame
        }
    }
  
    do_shutdown();
    UnregisterClass(CLASS_NAME, inst);
    CoUninitialize();

    
return 0;
}

LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
    
// Only handle window destruction messages
    switch(msg) 
    {
    
case WM_DESTROY:
        PostQuitMessage(
0);
        
break;

    
case WM_KEYDOWN:
        
if(wParam == VK_ESCAPE)
            DestroyWindow(hwnd);

        
break;
    }

    
return DefWindowProc(hwnd, msg, wParam, lParam);
}

bool do_init(HWND hwnd)
{
    init_d3d(
&g_d3d, &g_device, hwnd, falsefalse);

    
if(FAILED(load_mesh(&g_robot_mesh_container, g_device, "..\\Data\\robot.x""..\\Data\\"00)))
        
return false;

    
if(FAILED(load_mesh(&g_ground_mesh_container, g_device, "..\\Data\\ground.x""..\\Data\\"00)))
        
return false;

    
// create the backdrop

    sBackdropVertex backdrop_verts[
4= 
    {
        {   
0.0f,   0.01.01.0f0.0f0.0f },
        { 
640.0f,   0.01.01.0f1.0f0.0f },
        {   
0.0f480.01.01.0f0.0f1.0f },
        { 
640.0f480.01.01.0f1.0f1.0f }            
    };

    g_device
->CreateVertexBuffer(sizeof(backdrop_verts), D3DUSAGE_WRITEONLY, BACKDROP_FVF, D3DPOOL_DEFAULT,
                                 
&g_backdrop_vb, NULL);

    
char* ptr;

    g_backdrop_vb
->Lock(00, (void**)&ptr, 0);
    memcpy(ptr, backdrop_verts, 
sizeof(backdrop_verts));
    g_backdrop_vb
->Unlock();

    D3DXCreateTextureFromFile(g_device, 
"..\\Data\\Backdrop.bmp"&g_backdrop_texture);

    
// setup a directional light

    D3DLIGHT9 light;
    ZeroMemory(
&light, sizeof(D3DLIGHT9));

    light.Type 
= D3DLIGHT_DIRECTIONAL;
    light.Diffuse.r 
= light.Diffuse.g = light.Diffuse.b = light.Diffuse.a = 1.0f;
    light.Direction 
= D3DXVECTOR3(0.0f-0.5f0.5f);

    g_device
->SetLight(0&light);
    g_device
->LightEnable(0, TRUE);

    
if(! g_route_parser.load("..\\Data\\Route.x"))
        
return false;

    
return true;
}

void do_shutdown()
{
    
// free mesh data
    delete g_robot_mesh_container;    g_robot_mesh_container  = NULL;
    delete g_ground_mesh_container;    g_ground_mesh_container 
= NULL;

    release_com(g_backdrop_vb);
    release_com(g_backdrop_texture);

    
// release D3D objects
    release_com(g_device);
    release_com(g_d3d);
}

void do_frame()
{
    
static DWORD start_time = timeGetTime();
    DWORD curr_time 
= timeGetTime();

    
// calculate the position in which to place the robot along the path based on time and robot_route_length of route.
    float robot_route_length = g_route_parser.get_length("Robot");
    DWORD robot_dist 
= (curr_time - start_time) / 10;
    robot_dist 
%= ((DWORD)robot_route_length + 1);

    
// get the camera's position
    float camera_route_length = g_route_parser.get_length("Camera");
    DWORD camera_dist 
= (curr_time - start_time) / 20;
    camera_dist 
%= ((DWORD) camera_route_length + 1);

    
// get the target's position
    float target_route_length = g_route_parser.get_length("Target");
    DWORD target_dist 
= (curr_time - start_time) / 10;
    target_dist 
%= ((DWORD) target_route_length + 1);

    
// update the positions of the robot
    g_robot_last_pos = g_robot_pos;
    g_route_parser.locate(
"Robot", (float)robot_dist, &g_robot_pos);

    
// get camera and target position
    D3DXVECTOR3 camera_pos, target_pos;
    g_route_parser.locate(
"Camera", (float)camera_dist, &camera_pos);
    g_route_parser.locate(
"Target", (float)target_dist, &target_pos);

    
// set a view transformation matrix
    D3DXMATRIX  mat_view;    
    D3DXVECTOR3 up(
0.0f1.0f0.0f);
    D3DXMatrixLookAtLH(
&mat_view, &camera_pos, &target_pos, &up);
    g_device
->SetTransform(D3DTS_VIEW, &mat_view);

    
// clear the device and start drawing the scene

    g_device
->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_RGBA(000255), 1.0f0);

    g_device
->BeginScene();

    
// draw the backdrop
    g_device->SetFVF(BACKDROP_FVF);
    g_device
->SetStreamSource(0, g_backdrop_vb, 0sizeof(sBackdropVertex));
    g_device
->SetTexture(0, g_backdrop_texture);
    g_device
->DrawPrimitive(D3DPT_TRIANGLESTRIP, 02);

    g_device
->SetRenderState(D3DRS_LIGHTING, TRUE);

    
// draw the ground mesh
    D3DXMATRIX mat_world;
    D3DXMatrixIdentity(
&mat_world);
    g_device
->SetTransform(D3DTS_WORLD, &mat_world);
    draw_mesh(g_ground_mesh_container);

    
// calculate the rotation of the robots based on last known position, and update last position once done.
    D3DXVECTOR3 diff = g_robot_pos - g_robot_last_pos;
    
float rot_x =  atan2(diff.y, diff.z);
    
float rot_y = -atan2(diff.z, diff.x);

    
// rotate the robot to point in direction of movement
    D3DXMatrixRotationYawPitchRoll(&mat_world, rot_y, rot_x, 0.0f);

    
// position the robot by setting the coordinates directly in the world transformation matrix
    mat_world._41 = g_robot_pos.x;
    mat_world._42 
= g_robot_pos.y;
    mat_world._43 
= g_robot_pos.z;
    g_device
->SetTransform(D3DTS_WORLD, &mat_world);

    draw_mesh(g_robot_mesh_container);

    g_device
->SetRenderState(D3DRS_LIGHTING, FALSE);

    g_device
->EndScene();

    g_device
->Present(NULL, NULL, NULL, NULL);
}

download source file


posted on 2008-04-21 18:23 lovedday 阅读(348) 评论(0)  编辑 收藏 引用


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


公告

导航

统计

常用链接

随笔分类(178)

3D游戏编程相关链接

搜索

最新评论