Prayer

在一般中寻求卓越
posts - 1256, comments - 190, trackbacks - 0, articles - 0
  C++博客 :: 首页 :: 新随笔 :: 联系 :: 聚合  :: 管理

Linux下的时间相关

Posted on 2009-02-04 18:07 Prayer 阅读(595) 评论(0)  编辑 收藏 引用 所属分类: LINUX/UNIX/AIX
      遇到一个问题:程序调用usleep,发现要休眠的时间始终达不到效果。后来一查才发现问题是usleep()是微秒,不是之前理解的毫秒,难怪达不到效果。遥想当初为了避免sleep()秒级休眠的时间跨度较大,所以特意用了usleep(),在PHP中usleep是毫秒级的,导致自己先入为主,真值得检讨。

       顺便查阅一些linux下关于时间的资料和函数,还挺有意思的:

1、Linux下的时间
1.1、Linux下的时间系统

       UNIX及Linux的时间系统是由"新纪元时间"Epoch(传说中的标志Unix时代开端的那个拂晓)开始计算起,单位为秒,Epoch则是指定为1970年一月一日凌晨零点零分零秒,格林威治时间。目前大部份的UNIX系统都是用32位来记录时间,正值表示为1970以後,负值则表示1970年以前。我们可以很简单地计算出其时间范围: 2^31/86400(s) = 24855.13481(天) ~ 68.0958(年)

1970+68.0958 = 2038.0958
1970-68.0958 = 1901.9042

时间范围为[1901.9042,2038.0958]。

      准确的时间为2038年一月十八日星期一晚上十点十四分七秒。那一刻,时间将会转为负数,变成1901年十二月十三日黑色星期五下午三点四十五分五十二秒,这就是所谓的UNIX 2038 BUG,或者您也可戏称为Jason hatchet bug。在大部份的UNIX上,并没有所谓Y2K问题,不过都有2038年问题

1.2、Linux下与时间有关的数据结构
struct timeval {
    int tv_sec;
    int tv_usec;
};
其中tv_sec是由凌晨开始算起的秒数,tv_usec则是微秒(10E-6 second)。

struct timezone {
    int tv_minuteswest;
    int tv_dsttime;
};
tv_minuteswest是格林威治时间往西方的时差,tv_dsttime则是时间的修正方式。

struct timespec
{
    long int tv_sec;
    long int tv_nsec;
};
tv_nsec是nano second(10E-9 second)。

struct tm
{
    int tm_sec;
    int tm_min;
    int tm_hour;
    int tm_mday;
    int tm_mon;
    int tm_year;
    int tm_wday;
    int tm_yday;
    int tm_isdst;
};
tm_sec表「秒」数,在[0,61]之间,多出来的两秒是用来处理跳秒问题用的。
tm_min表「分」数,在[0,59]之间。
tm_hour表「时」数,在[0,23]之间。
tm_mday表「本月第几日」,在[1,31]之间。
tm_mon表「本年第几月」,在[0,11]之间。
tm_year要加1900表示那一年。
tm_wday表「本第几日」,在[0,6]之间。
tm_yday表「本年第几日」,在[0,365]之间,闰年有366日。
tm_isdst表是否为「日光节约时间」。

struct itimerval {
struct timeval it_interval;
struct timeval it_value;
};
it_interval成员表示间隔计数器的初始值,而it_value成员表示间隔计数器的当前值。

2、获得当前时间

在所有的UNIX下,都有个time()的函数
time_t time(time_t *t);
这个函数会传回从epoch开始计算起的秒数,如果t是non-null,它将会把时间值填入t中。

对某些需要较高精准度的需求,Linux提供了gettimeofday()。
int gettimeofday(struct timeval * tv,struct timezone *tz);
int settimeofday(const struct timeval * tv,const struct timezone *tz);

struct tm格式时间函数

struct tm * gmtime(const time_t * t);
转换成格林威治时间。有时称为GMT或UTC。

struct tm * localtime(const time_t *t);
转换成本地时间。它可以透过修改TZ环境变数来在一台机器中,不同使用者表示不同时间。

time_t mktime(struct tm *tp);
转换tm成为time_t格式,使用本地时间。

tme_t timegm(strut tm *tp);
转换tm成为time_t格式,使用UTC时间。

double difftime(time_t t2,time_t t1);
计算秒差。

文字时间格式函数
char * asctime(struct tm *tp);
char * ctime(struct tm *tp);
这两个函数都转换时间格式为标准UNIX时间格式。
Mon May 3 08:23:35 1999

ctime一率使用当地时间,asctime则用tm结构内的timezone资讯来表示。
size_t strftime(char *str,size_t max,char *fmt,struct tm *tp);
strftime有点像sprintf,其格式由fmt来指定。

%a : 本第几天名称,缩写。
%A : 本第几天名称,全称。
%b : 月份名称,缩写。
%B : 月份名称,全称。
%c : 与ctime/asctime格式相同。
%d : 本月第几日名称,由零算起。
%H : 当天第几个小时,24小时制,由零算起。
%I : 当天第几个小时,12小时制,由零算起。
%j : 当年第几天,由零算起。
%m : 当年第几月,由零算起。
%M : 该小时的第几分,由零算起。
%p : AM或PM。
%S : 该分钟的第几秒,由零算起。
%U : 当年第几,由第一个日开始计算。
%W : 当年第几,由第一个一开始计算。
%w : 当第几日,由零算起。
%x : 当地日期。
%X : 当地时间。
%y : 两位数的年份。
%Y : 四位数的年份。
%Z : 时区名称的缩写。
%% : %符号。

char * strptime(char *s,char *fmt,struct tm *tp);
如同scanf一样,解译字串成为tm格式。

%h : 与%b及%B同。
%c : 读取%x及%X格式。
%C : 读取%C格式。
%e : 与%d同。
%D : 读取%m/%d/%y格式。
%k : 与%H同。
%l : 与%I同。
%r : 读取"%I:%M:%S %p"格式。
%R : 读取"%H:%M"格式。
%T : 读取"%H:%M:%S"格式。
%y : 读取两位数年份。
%Y : 读取四位数年份。

    下面举一个小例子,说明如何获得系统当前时间:
    time_t now;
    struct tm *timenow;
    char strtemp[255];

    time(&now);
    timenow = localtime(&now);
    printf("recent time is : %s \n", asctime(timenow));


3、延时

延时可以采用如下函数:
unsigned int sleep(unsigned int seconds);
sleep()会使目前程式陷入「冬眠」seconds秒,除非收到「不可抵」的信号。
如果sleep()没睡饱,它将会返回还需要补眠的时间,否则一般返回零。

void usleep(unsigned long usec);
usleep与sleep()类同,不同之处在於秒的单位为10E-6秒。

int select(0,NULL,NULL,NULL,struct timeval *tv);
可以利用select的实作sleep()的功能,它将不会等待任何事件发生。

int nanosleep(struct timespec *req,struct timespec *rem);
nanosleep会沉睡req所指定的时间,若rem为non-null,而且没睡饱,将会把要补眠的时间放在rem上。

4、定时器

4.1、alarm
如果不要求很精确的话,用 alarm() 和 signal() 就够了
unsigned int alarm(unsigned int seconds)
专门为SIGALRM信号而设,在指定的时间seconds秒后,将向进程本身发送SIGALRM信号,又称为闹钟时间。进程调用alarm后,任何以前的alarm()调用都将无效。如果参数seconds为零,那么进程内将不再包含任何闹钟时间。如果调用alarm()前,进程中已经设置了闹钟时间,则返回上一个闹钟时间的剩余时间,否则返回0。

示例:
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void sigalrm_fn(int sig)
{
         /* Do something */
         printf("alarm!\n");

         alarm(2);
         return;
}

int main(void)
{
         signal(SIGALRM, sigalrm_fn);
         alarm(2);

         /* Do someting */
         while(1) pause();
}

4.2、setitimer
int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue));
setitimer()比alarm功能强大,支持3种类型的定时器:
ITIMER_REAL :   以系统真实的时间来计算,它送出SIGALRM信号。  
ITIMER_VIRTUAL :   以该行程真正有执行的时间来计算,它送出SIGVTALRM信号。  
ITIMER_PROF :   以行程真正有执行及在核心中所费的时间来计算,它送出SIGPROF信号。  
Setitimer()第一个参数which指定定时器类型(上面三种之一);第二个参数是结构itimerval的一个实例;第三个参数可不做处理。

Setitimer()调用成功返回0,否则返回-1。
     下面是关于setitimer调用的一个简单示范,在该例子中,每隔一秒发出一个SIGALRM,每隔0.5秒发出一个SIGVTALRM信号::
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>

int sec;
void sigroutine(int signo){
     switch (signo){
     case SIGALRM:
         printf("Catch a signal -- SIGALRM \n");
         signal(SIGALRM, sigroutine);
         break;
     case SIGVTALRM:
         printf("Catch a signal -- SIGVTALRM \n");
         signal(SIGVTALRM, sigroutine);
         break;
     }
     return;
}

int main()
{
     struct itimerval value, ovalue, value2;
    
     sec = 5;
     printf("process id is %d ", getpid());
     signal(SIGALRM, sigroutine);
     signal(SIGVTALRM, sigroutine);
     value.it_value.tv_sec = 1;
     value.it_value.tv_usec = 0;
     value.it_interval.tv_sec = 1;
     value.it_interval.tv_usec = 0;
     setitimer(ITIMER_REAL, &value, &ovalue);

     value2.it_value.tv_sec = 0;
     value2.it_value.tv_usec = 500000;
     value2.it_interval.tv_sec = 0;
     value2.it_interval.tv_usec = 500000;
     setitimer(ITIMER_VIRTUAL, &value2, &ovalue);
}

该例子的屏幕拷贝如下:
localhost:~$ ./timer_test
process id is 579
Catch a signal – SIGVTALRM
Catch a signal – SIGALRM
Catch a signal – SIGVTALRM
Catch a signal – SIGVTALRM
Catch a signal – SIGALRM
Catch a signal –GVTALRM
     注意:Linux信号机制基本上是从Unix系统中继承过来的。早期Unix系统中的信号机制比较简单和原始,后来在实践中暴露出一些问题,因此,把那些建立在早期机制上的信号叫做"不可靠信号",信号值小于SIGRTMIN(Red hat 7.2中,SIGRTMIN=32,SIGRTMAX=63)的信号都是不可靠信号。这就是"不可靠信号"的来源。它的主要问题是:进程每次处理信号后,就将对信号的响应设置为默认动作。在某些情况下,将导致对信号的错误处理;因此,用户如果不希望这样的操作,那么就要在信号处理函数结尾再一次调用signal(),重新安装该信号。 

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理