Fork me on GitHub
随笔 - 213  文章 - 13  trackbacks - 0
<2017年5月>
30123456
78910111213
14151617181920
21222324252627
28293031123
45678910


专注即时通讯及网游服务端编程
------------------------------------
Openresty 官方模块
Openresty 三方模块
------------------------------------
本博收藏大部分文章为转载,并在文章开头给出了原文出处,如有再转,敬请保留相关信息,这是大家对原创作者劳动成果的自觉尊重!!如为您带来不便,请于本博下留言,谢谢配合。

常用链接

留言簿(1)

随笔分类

随笔档案

相册

Awesome

Blog

Book

GitHub

Link

搜索

  •  

积分与排名

  • 积分 - 125962
  • 排名 - 176

最新评论

阅读排行榜

http://blog.csdn.net/vipally/article/details/52940119

相对于C语言,golang是类型安全的语言。但是安全的代价就是性能的妥协。 
下面我们通过Golang中的“黑科技”来一窥Golang不想让我们看到的“秘密”——string的底层数据。 
通过reflect包,我们可以知道,在Golang底层,string和slice其实都是struct:

type SliceHeader struct {
    Data uintptr
    Len  int
    Cap  int
}
type StringHeader struct {
    Data uintptr
    Len  int
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

其中Data是一个指针,指向实际的数据地址,Len表示数据长度。 
但是,在string和[]byte转换过程中,Golang究竟悄悄帮我们做了什么,来达到安全的目的? 
在Golang语言规范里面,string数据是禁止修改的,试图通过&s[0], &b[0]取得string和slice数据指针地址也是不能通过编译的。 
下面,我们就通过Golang的“黑科技”来一窥Golang背后的“秘密”。

//return GoString's buffer slice(enable modify string)
func StringBytes(s string) Bytes {
    return *(*Bytes)(unsafe.Pointer(&s))
}

// convert b to string without copy
func BytesString(b []byte) String {
    return *(*String)(unsafe.Pointer(&b))
}

// returns &s[0], which is not allowed in go
func StringPointer(s string) unsafe.Pointer {
    p := (*reflect.StringHeader)(unsafe.Pointer(&s))
    return unsafe.Pointer(p.Data)
}

// returns &b[0], which is not allowed in go
func BytesPointer(b []byte) unsafe.Pointer {
    p := (*reflect.SliceHeader)(unsafe.Pointer(&b))
    return unsafe.Pointer(p.Data)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

以上4个函数的神奇之处在于,通过unsafe.Pointer和reflect.XXXHeader取到了数据首地址,并实现了string和[]byte的直接转换(这些操作在语言层面是禁止的)。 
下面我们就通过这几个“黑科技”来测试一下语言底层的秘密:

func TestPointer(t *testing.T) {
    s := []string{
        "",
        "",
        "hello",
        "hello",
        fmt.Sprintf(""),
        fmt.Sprintf(""),
        fmt.Sprintf("hello"),
        fmt.Sprintf("hello"),
    }
    fmt.Println("String to bytes:")
    for i, v := range s {
        b := unsafe.StringBytes(v)
        b2 := []byte(v)
        if b.Writeable() {
            b[0] = 'x'
        }
        fmt.Printf("%d\ts=%5s\tptr(v)=%-12v\tptr(StringBytes(v)=%-12v\tptr([]byte(v)=%-12v\n",
            i, v, unsafe.StringPointer(v), b.Pointer(), unsafe.BytesPointer(b2))
    }

    b := [][]byte{
        []byte{},
        []byte{'h', 'e', 'l', 'l', 'o'},
    }
    fmt.Println("Bytes to string:")
    for i, v := range b {
        s1 := unsafe.BytesString(v)
        s2 := string(v)
        fmt.Printf("%d\ts=%5s\tptr(v)=%-12v\tptr(StringBytes(v)=%-12v\tptr(string(v)=%-12v\n",
            i, s1, unsafe.BytesPointer(v), s1.Pointer(), unsafe.StringPointer(s2))
    }

}

const N = 3000000

func Benchmark_Normal(b *testing.B) {
    for i := 1; i < N; i++ {
        s := fmt.Sprintf("12345678901234567890123456789012345678901234567890")
        bb := []byte(s)
        bb[0] = 'x'
        s = string(bb)
        s = s
    }
}
func Benchmark_Direct(b *testing.B) {
    for i := 1; i < N; i++ {
        s := fmt.Sprintf("12345678901234567890123456789012345678901234567890")
        bb := unsafe.StringBytes(s)
        bb[0] = 'x'
        s = s
    }
}

//test result
//String to bytes:
//0 s=      ptr(v)=0x51bd70     ptr(StringBytes(v)=0x51bd70     ptr([]byte(v)=0xc042021c58
//1 s=      ptr(v)=0x51bd70     ptr(StringBytes(v)=0x51bd70     ptr([]byte(v)=0xc042021c58
//2 s=hello ptr(v)=0x51c2fa     ptr(StringBytes(v)=0x51c2fa     ptr([]byte(v)=0xc042021c58
//3 s=hello ptr(v)=0x51c2fa     ptr(StringBytes(v)=0x51c2fa     ptr([]byte(v)=0xc042021c58
//4 s=      ptr(v)=<nil>        ptr(StringBytes(v)=<nil>        ptr([]byte(v)=0xc042021c58
//5 s=      ptr(v)=<nil>        ptr(StringBytes(v)=<nil>        ptr([]byte(v)=0xc042021c58
//6 s=xello ptr(v)=0xc0420444b5 ptr(StringBytes(v)=0xc0420444b5 ptr([]byte(v)=0xc042021c58
//7 s=xello ptr(v)=0xc0420444ba ptr(StringBytes(v)=0xc0420444ba ptr([]byte(v)=0xc042021c58
//Bytes to string:
//0 s=      ptr(v)=0x5c38b8     ptr(StringBytes(v)=0x5c38b8     ptr(string(v)=<nil>
//1 s=hello ptr(v)=0xc0420445e0 ptr(StringBytes(v)=0xc0420445e0 ptr(string(v)=0xc042021c38
//Benchmark_Normal-4    1000000000           0.87 ns/op
//Benchmark_Direct-4    2000000000           0.24 ns/op
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

结论如下: 
1.string常量会在编译期分配到只读段,对应数据地址不可写入,并且相同的string常量不会重复存储。 
2.fmt.Sprintf生成的字符串分配在堆上,对应数据地址可修改。 
3.常量空字符串有数据地址,动态生成的字符串没有设置数据地址 
4.Golang string和[]byte转换,会将数据复制到堆上,返回数据指向复制的数据 
5.动态生成的字符串,即使内容一样,数据也是在不同的空间 
6.只有动态生成的string,数据可以被黑科技修改 
8.string和[]byte通过复制转换,性能损失接近4倍

我将测试代码放在这里,欢迎参考: 
https://github.com/vipally/gx/blob/master/unsafe/string_test.go

参考资料: 
[1] Go语言黑魔法 http://studygolang.com/articles/2909

posted on 2017-05-04 10:32 思月行云 阅读(357) 评论(0)  编辑 收藏 引用 所属分类: Golang

只有注册用户登录后才能发表评论。
【推荐】超50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理