posts - 64, comments - 4, trackbacks - 0, articles - 0

二分图最大匹配总结

Posted on 2010-08-21 13:40 acronix 阅读(2435) 评论(0)  编辑 收藏 引用 所属分类: hzshuai解题中算法总结

1。一个二分图中的最大匹配数等于这个图中的最小点覆盖数

【转自Matirx67】二分图最大匹配的König定理及其证明

    本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。
    以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案:
    1. 什么是二分图;
    2. 什么是二分图的匹配;
    3. 什么是匈牙利算法;(http://www.matrix67.com/blog/article.asp?id=41)
    4. König定理证到了有什么用;
    5. 为什么o上面有两个点。

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在这里写一下这个定理的证明,希望对大家有所帮助。



    假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
    匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
    首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)。因此,最后我们圈起来的点与匹配边一一对应。
    其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
    最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。
    证完了。

2。最小路径覆盖=最小路径覆盖=|G|-最大匹配数

 在一个N*N的有向图中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,
 且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,
 那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.
 eg. 图4*4的图G的最小路径覆盖,包含2条路径: p1->p3, p2->p4

 由上面可以得出:

 1.一个单独的顶点是一条路径;
 2.如果存在一路径p1,p2,......pk,其中p1 为起点,pk为终点,那么在覆盖图中,顶点p1,p2,......pk不再与其它的
   顶点之间存在有向边.

 最小路径覆盖就是找出最小的路径条数,使之成为G的一个路径覆盖.

 路径覆盖与二分图匹配的关系:最小路径覆盖=|G|-最大匹配数;

 其中最大匹配数的求法是把G中的每个顶点pi分成两个顶点pi'与pi'',如果在p中存在一条pi到pj的边,那么在
 二分图G'中就有一条连接pi'与pj''的无向边;这里pi' 就是p中pi的出边,pj''就是p中pj 的一条入边;

 对于公式:最小路径覆盖=|G|-最大匹配数;可以这么来理解;

 如果匹配数为零,那么P中不存在有向边,于是显然有:
 最小路径覆盖=|G|-最大匹配数=|G|-0=|G|;即P的最小路径覆盖数为|G|;

 G'中不在于匹配边时,路径覆盖数为|G|;

 如果在G'中增加一条匹配边pi'->pj'',那么在图P的路径覆盖中就存在一条由pi连接pj的边,也就是说pi与pj 在
 一条路径上,于是路径覆盖数就可以减少一个;如此继续增加匹配边,每增加一条,路径覆盖数就减少一条;
 直到匹配边不能继续增加时,路径覆盖数也不能再减少了,此时就有了前面的公式;但是这里只是说话了每条匹配边
 对应于路径覆盖中的一条路径上的一条连接两个点之间的有向边;下面来说明一个路径覆盖中的每条连接两个顶点之
 间的有向边对应于一条匹配边。

3。二分图最大独立集=顶点数-二分图最大匹配

独立集:图中任意两个顶点都不相连的顶点集合。


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理