shootingstars

posts(9) comments(4) trackbacks(0)
  • C++博客
  • 联系
  • RSS 2.0 Feed 聚合
  • 管理

常用链接

  • 我的随笔
  • 我的评论
  • 我参与的随笔

留言簿

  • 给我留言
  • 查看公开留言
  • 查看私人留言

随笔分类

  • C++(7)
  • IPC
  • PKI(1)
  • 网络(1)

随笔档案

  • 2007年7月 (3)
  • 2007年6月 (5)
  • 2006年2月 (1)

我的收藏

  • Linux,Flex,Yacc....
  • 对很多东东的理解极具深度。文章细致,由浅入深。

搜索

  •  

最新评论

  • 1. re: P2P之UDP穿透NAT的原理与实现(附源代码)
  • 测试了下, 打不通, 求指导。
  • --napt
  • 2. re: P2P之UDP穿透NAT的原理与实现(附源代码)
  • 楼主,工程页面已经没了,给以发我一份吗?谢谢
    549162261@qq.com
  • --SLINGERWANG
  • 3. re: P2P之UDP穿透NAT的原理与实现(附源代码)
  • 楼主 工程下载失败 可否提供一份学习 谢谢
    msopengl@163.com
  • --jemmyLiu
  • 4. re: 如何删除C++容器中的值
  • 评论内容较长,点击标题查看
  • --cchao

阅读排行榜

评论排行榜

2007年7月31日

[导入]C++中关于类中常数静态成员初始化的问题

class mytestclass
{
public:
    const static int i = 5;
};
int main()
{
    std::cout<<mytestclass::i<<std::endl;
    return 0;
}
结果没有问题,输出为5(编译器为vc7.1)

但是在下面这个例子中:
int regi()
{
    return 5;
}
class mytestclass
{
public:
    const static int i = regi();
};
int main()
{
    std::cout<<mytestclass::i<<std::endl;
    return 0;
}
输出却不正确,输出为0(编译链接都没有问题)。。。
似乎代码并没有执行regi函数?

在C++标准中将初始化变量分为"动态初始化"和"静态初始化","动态初始化"为利用函数进行初始化,"静态初始化"为常量表达式进行初始化.
C++标准对于类中的常量表达式的"动态初始化"似乎并未做说明,所以是否支持类中常数静态变量的动态初始化也就取决与编译器的设计了.
但是无论如何vc7.1的编译结果都是不对的,它并没有给出错误,但是结果与逻辑不向符合,这应该是vc7.1的一个bug.(在vs2005中的C++编译器已经修正了这个bug,给出了一个编译Error)

详细讨论请见:
http://community.csdn.net/Expert/topic/4432/4432789.xml?temp=.3202783

特别感谢qfeng_zhao 、 lxpws 、 iGray 等几位.



shootingstars 2006-01-23 11:46 发表评论

文章来源:http://www.cnblogs.com/shootingstars/archive/2006/01/23/321956.html

posted @ 2007-07-31 13:17 shootingstars 阅读(580) | 评论 (0) | 编辑 收藏

2007年7月30日

boost::regex学习

一:编译
boost的正则表达式需要编译(如果不需要全部Boost的功能的话,请不要build all boost,那会花掉好几个小时。我推荐仅仅build需要的库就好。)
原有的boost 1.33似乎使用vc8编译的时候有问题。下载boost 1.34.1,使用“Visual Studio 2005 Command Prompt”,进入到boost_1_34_1\libs\regex\build:
nmake vc8.mak
OK,生成的文件在vc80下。

二:学习正则表达式
http://www.cppblog.com/Files/shootingstars/deelx_zh.rar
不错的正则表达式的学习资料,顺便推荐一下:
http://www.regexlab.com/
这个站长还与我有个一信之缘(我写的P2P之UDP穿透NAT的原理与实现(附源代码))。站长的这个正则库在CodeProject获得了不错的评价。

三:简单的例子
    std::string regstr = "a+";
    boost::regex expression(regstr);
    std::string testString = "aaa";

    // 匹配至少一个a
    if( boost::regex_match(testString, expression) )
    {
        std::cout<< "Match" << std::endl;
    }
    else
    {
        std::cout<< "Not Match" << std::endl;
    }

posted @ 2007-07-30 17:30 shootingstars 阅读(3811) | 评论 (0) | 编辑 收藏

2007年7月26日

boost::algorithm学习

     摘要: boost::algorithm提供了很多字符串算法,包括:
大小写转换;
去除无效字符;
谓词;
查找;
删除/替换;
切割;
连接;
我们用写例子的方式来了解boost::algorithm能够为我们做些什么。  阅读全文

posted @ 2007-07-26 14:12 shootingstars 阅读(8977) | 评论 (0) | 编辑 收藏

2007年6月19日

是我rp不好,还是Microsoft的rp不好。。。

程序原来一直跑的挺好的。。。
But从昨天下午开始,没有修改任何代码,编译程序,然后运行。。。报错,说什么buffer overrun错误。哦,以前遇到过类似情况,可能是动态库和lib文件不一致导致的。没关系,ReBuild整个项目(得稍微花点时间,呵呵,乘着这个机会,上网溜达会)。花了15分钟,Build完了。满怀信心的执行。。。啊,又报错了。。。还是同样的问题。嗯,想想,难道是Vss上面有人修改东西了,我无意间获取了最新版本?有这个可能。于是上Vss看Show History。似乎这几天代码都没有变化。。。那是什么问题?我就不信邪了,再次ReBuild,又是一个15分钟。运行,出错。啊。。。
于是上google搜索出错信息,嗯,有那边几页,不过看完了,要么是没有回复,要么跟我的情况牛头不对马嘴。嗯,看来这种情况还挺特殊,看来还得自力更生了。
于是删除所有代码,从Vss在下载最新的,再次ReBuild。嗯,编译没有错,运行。。。嗯,也不算有错,只不过一个第三方的库运行时报了个异常。这个。。。再次检查代码,没有发现问题。汗,于是出来了。。。

今天早上上班继续倒腾,这个Vss版本有问题,下个以前的Label的,应该不会有问题了吧。于是再次ReBuild,运行,这回不再是buffer overrun,也不是异常了,而是报heap corruption。我晕倒中。。。

在重新ReBuild了n回后,花了n个15分钟后。我彻底没辙了。于是我向上帝祈祷,神啊,救救我吧。

于是,神听到了,发出了它的神力,在我百般无赖,手足无措的时候,我再次下载的最新的Vss代码版本,ReBuild,于是运行通过。

嗯,唉,是我rp不好,还是Microsoft的rp不好(我用的VC8)。。。我无语,希望高人指点问题原因。

posted @ 2007-06-19 17:26 shootingstars 阅读(333) | 评论 (0) | 编辑 收藏

2007年6月13日

五种迭代器

1 InputIterator 可以被用来读取容器中的元素但是不保证支持向容器的写入操作
InputIterator 必须提供下列最小支持提供其他支持的iterator 也可被用作InputIterator 只要
它们满足这个最小要求集两个iterator 的相等和不相等测试通过operator ++ 的前置和
后置实例向前递增iterator 指向下一个元素通过解引用操作符operator * 读取一个元素
求在这个层次上提供支持的泛型算法包括find() accumulate()和equal() 任何一个算法如果
要求InputIterator 那么我们也可以向其传递第3 4 5 项列出的iterator 类别中的任一个
即:只要某个类实现上面的操作既可以被认为是InputIterator。
2 OutputIterator 可以被认为是与InputIterator 功能相反的iterator 即它可以被用来向容
器写入元素但是不保证支持读取容器的内容OutputIterator 一般被用作算法的第三个实参
标记出起始写入的位置例如copy()取OutputIterator 作为第三个实参任何一个算法如果
要求OutputIterator 那么我们也可以向其传递第3 4 5 项列出的iterator 类别中的任一个
注意:这个迭代器似乎仅仅实现了赋值操作即可
3 ForwardIterator 可以被用来以某一个遍历方向是的下一个类别支持双向遍历向
容器读或写有些泛型算法至少要求ForwardIterator 包括adjacent_find() swap_range()和
replace() 当然任何要求ForwardIterator 支持的算法都可以向其传递第4 和5 项定义的iterator
类别
注意:这个迭代器既符合InputIterator又符合OutputIterator,同样下面两个也是这样。支持operator++操作
4 BidirectionalIterator 从两个方向读或写一个容器有些泛型算法至少要求
BidirectionalIterator 包括inplace_merge() next_permutation()和reverse()
注意:继承1,2,3的特性,并且支持operator--操作
5 RandomAccessIterator 除了支持BidirectionalIterator 所有的功能之外还提供了在
常数时间内访问容器的任意位置的支持要求RandomAccessIterator 支持的泛型算法包括
binary_search() sort_heap()和nth_element()
注意:继承1,2,3的特性,并且符合随机访问策略,即支持operator[]操作

posted @ 2007-06-13 18:35 shootingstars 阅读(2046) | 评论 (0) | 编辑 收藏

C++泛型算法笔记(1)

find
template < class ForwardIterator, class Type >
ForwardIterator
find( ForwardIterator first, ForwardIterator last, Type value )

find返回一个迭代器,表明是否找到元素,如果找不到返回参数的last。
参数
first:开始搜索的第一个元素
last:搜索到此元素之前,不包括此元素
value:需要搜索的值

back_inserter
template<class _Container>
back_insert_iterator
<_Container>
back_inserter(_Container
& _Cont)
这个函数返回一个迭代器back_insert_iterator<_Container>,这个迭代器是从OutputIterator继承过来的,表明这个迭代器可以被写入。这个迭代器重写了赋值操作,在赋值操作中使用push_back将元素插入容器中。
参数
_Cont:希望被插入值的容器

copy
template < class InputIterator, class OutputIterator >
OutputIterator
copy( InputIterator first1, InputIterator last,
OutputIterator first2 );
这个函数返回一个OutputIterator迭代器
参数
first:开始拷贝的第一个元素
last:拷贝到此元素之前,不包括此元素
first2:拷贝到此迭代器。我们可以使用上面的back_inserter函数返回的OutputIterator

posted @ 2007-06-13 18:14 shootingstars 阅读(2234) | 评论 (0) | 编辑 收藏

2007年6月12日

如何删除C++容器中的值

C++的容器中一般都提供erase函数,此函数接收的参数一般有一个是一个迭代器:
如果删除某一个值的话,我们可能一般都用过:
list<int> c;
// todo insert items
for (list<int>::iterator i = c.begin(); i!= c.end(); ++i)
{
    
if ((*i)>10)
    {
        
// 如果有一个值大于10,删除之
        c.erase(i);
        
break;
    }
}
上述代码在删除一个元素的时候并没有问题。。。但是我们想删除所有大于10的值,于是:
list<int> c;
// todo insert items
for (list<int>::iterator i = c.begin(); i!= c.end(); ++i)
{
    
if ((*i)>10)
    {
        
// 删除所有大于10的值
        c.erase(i);
    }
}
满怀希望的编译,运行。。。于是异常发生。。。
啊。。。哦。。。
原来是删除迭代器i后,i所指的元素已经失效了,然后给i++,它已经不在存在了。。。于是绞尽脑汁,出笼了下面的代码:
list<int> c;
// todo insert items
list<int>::iterator nextitr = c.begin();
for (list<int>::iterator i = c.begin();;)
{
    
if(nextitr == c.end())
        
break;
    
++nextitr;
    
if ((*i)>10)
    {
        
// 如果有一个值大于10,删除之
        c.erase(i);
    }
    i 
= nextitr;
}
上面的代码很容易理解,即在删除一个迭代器之前,把它的之后的迭代器先存储,然后在下次循环的时候利用之前存储的迭代器。
OK,我们看到上面这段代码可以工作了,行为似乎也还正确,只是。。。代码似乎多了点。我想代码能够少点就好了,逻辑也不要那么麻烦。那么我们看下面的代码(转载自Effective STL)。
list<int> c;
// todo insert items
for (list<int>::iterator i = c.begin(); i!= c.end();)
{
    
if ((*i)>10)
    {
        
// 如果有一个值大于10,删除之
        c.erase(i++);
    }
    
else
        i
++;
}
嗯。。。高手就是高手(我以前根本没有在意过++i和i++在使用的过程中能有这么大的区别)
好了,最后再提供一个版本,利用list的remove_if函数。
bool fun(int i)
{
    
if(i>10)
        
return true;
    
else
        
return false;
}

list
<int> c;
// todo insert items
c.remove_if(fun);
嗯,其实删除一个容器中的值的方式还是挺多的。

posted @ 2007-06-12 17:37 shootingstars 阅读(6649) | 评论 (1) | 编辑 收藏

P2P之UDP穿透NAT的原理与实现(附源代码)

P2P之UDP穿透NAT的原理与实现(附源代码)
作者:shootingstars | 日期:2004-05-25 | 字体:大 中 小

P2P 之 UDP穿透NAT的原理与实现(附源代码)
原创:shootingstars
参考:http://midcom-p2p.sourceforge.net/draft-ford-midcom-p2p-01.txt

论坛上经常有对P2P原理的讨论,但是讨论归讨论,很少有实质的东西产生(源代码)。呵呵,在这里我就用自己实现的一个源代码来说明UDP穿越NAT的原理。

首先先介绍一些基本概念:
    NAT(Network Address Translators),网络地址转换:网络地址转换是在IP地址日益缺乏的情况下产生的,它的主要目的就是为了能够地址重用。NAT分为两大类,基本的NAT和NAPT(Network Address/Port Translator)。
    最开始NAT是运行在路由器上的一个功能模块。
   
    最先提出的是基本的NAT,它的产生基于如下事实:一个私有网络(域)中的节点中只有很少的节点需要与外网连接(呵呵,这是在上世纪90年代中期提出的)。那么这个子网中其实只有少数的节点需要全球唯一的IP地址,其他的节点的IP地址应该是可以重用的。
    因此,基本的NAT实现的功能很简单,在子网内使用一个保留的IP子网段,这些IP对外是不可见的。子网内只有少数一些IP地址可以对应到真正全球唯一的 IP地址。如果这些节点需要访问外部网络,那么基本NAT就负责将这个节点的子网内IP转化为一个全球唯一的IP然后发送出去。(基本的NAT会改变IP 包中的原IP地址,但是不会改变IP包中的端口)
    关于基本的NAT可以参看RFC 1631
   
    另外一种NAT叫做NAPT,从名称上我们也可以看得出,NAPT不但会改变经过这个NAT设备的IP数据报的IP地址,还会改变IP数据报的 TCP/UDP端口。基本NAT的设备可能我们见的不多(呵呵,我没有见到过),NAPT才是我们真正讨论的主角。看下图:
                                Server S1                        
                         18.181.0.31:1235                         
                                      |
          ^  Session 1 (A-S1)  ^      |
          |  18.181.0.31:1235  |      |  
          v 155.99.25.11:62000 v      |   
                                      |
                                     NAT
                                 155.99.25.11
                                      |
          ^  Session 1 (A-S1)  ^      |
          |  18.181.0.31:1235  |      |
          v   10.0.0.1:1234    v      |
                                      |
                                   Client A
                                10.0.0.1:1234
    有一个私有网络10.*.*.*,Client A是其中的一台计算机,这个网络的网关(一个NAT设备)的外网IP是155.99.25.11(应该还有一个内网的IP地址,比如 10.0.0.10)。如果Client A中的某个进程(这个进程创建了一个UDP Socket,这个Socket绑定1234端口)想访问外网主机18.181.0.31的1235端口,那么当数据包通过NAT时会发生什么事情呢?
    首先NAT会改变这个数据包的原IP地址,改为155.99.25.11。接着NAT会为这个传输创建一个Session(Session是一个抽象的概念,如果是TCP,也许Session是由一个SYN包开始,以一个FIN包结束。而UDP呢,以这个IP的这个端口的第一个UDP开始,结束呢,呵呵,也许是几分钟,也许是几小时,这要看具体的实现了)并且给这个Session分配一个端口,比如62000,然后改变这个数据包的源端口为62000。所以本来是(10.0.0.1:1234->18.181.0.31:1235)的数据包到了互联网上变为了(155.99.25.11:62000 ->18.181.0.31:1235)。
    一旦NAT创建了一个Session后,NAT会记住62000端口对应的是10.0.0.1的1234端口,以后从18.181.0.31发送到 62000端口的数据会被NAT自动的转发到10.0.0.1上。(注意:这里是说18.181.0.31发送到62000端口的数据会被转发,其他的 IP发送到这个端口的数据将被NAT抛弃)这样Client A就与Server S1建立以了一个连接。

    呵呵,上面的基础知识可能很多人都知道了,那么下面是关键的部分了。
    看看下面的情况:
    Server S1                                     Server S2
 18.181.0.31:1235                              138.76.29.7:1235
        |                                             |
        |                                             |
        +----------------------+----------------------+
                               |
   ^  Session 1 (A-S1)  ^      |      ^  Session 2 (A-S2)  ^
   |  18.181.0.31:1235  |      |      |  138.76.29.7:1235  |
   v 155.99.25.11:62000 v      |      v 155.99.25.11:62000 v
                               |
                            Cone NAT
                          155.99.25.11
                               |
   ^  Session 1 (A-S1)  ^      |      ^  Session 2 (A-S2)  ^
   |  18.181.0.31:1235  |      |      |  138.76.29.7:1235  |
   v   10.0.0.1:1234    v      |      v   10.0.0.1:1234    v
                               |
                            Client A
                         10.0.0.1:1234
    接上面的例子,如果Client A的原来那个Socket(绑定了1234端口的那个UDP Socket)又接着向另外一个Server S2发送了一个UDP包,那么这个UDP包在通过NAT时会怎么样呢?
    这时可能会有两种情况发生,一种是NAT再次创建一个Session,并且再次为这个Session分配一个端口号(比如:62001)。另外一种是 NAT再次创建一个Session,但是不会新分配一个端口号,而是用原来分配的端口号62000。前一种NAT叫做Symmetric NAT,后一种叫做Cone NAT。我们期望我们的NAT是第二种,呵呵,如果你的NAT刚好是第一种,那么很可能会有很多P2P软件失灵。(可以庆幸的是,现在绝大多数的NAT属于后者,即Cone NAT)
 
    好了,我们看到,通过NAT,子网内的计算机向外连结是很容易的(NAT相当于透明的,子网内的和外网的计算机不用知道NAT的情况)。
    但是如果外部的计算机想访问子网内的计算机就比较困难了(而这正是P2P所需要的)。
    那么我们如果想从外部发送一个数据报给内网的计算机有什么办法呢?首先,我们必须在内网的NAT上打上一个“洞”(也就是前面我们说的在NAT上建立一个 Session),这个洞不能由外部来打,只能由内网内的主机来打。而且这个洞是有方向的,比如从内部某台主机(比如:192.168.0.10)向外部的某个IP(比如:219.237.60.1)发送一个UDP包,那么就在这个内网的NAT设备上打了一个方向为219.237.60.1的“洞”,(这就是称为UDP Hole Punching的技术)以后219.237.60.1就可以通过这个洞与内网的192.168.0.10联系了。(但是其他的IP不能利用这个洞)。

呵呵,现在该轮到我们的正题P2P了。有了上面的理论,实现两个内网的主机通讯就差最后一步了:那就是鸡生蛋还是蛋生鸡的问题了,两边都无法主动发出连接请求,谁也不知道谁的公网地址,那我们如何来打这个洞呢?我们需要一个中间人来联系这两个内网主机。
    现在我们来看看一个P2P软件的流程,以下图为例:

                       Server S (219.237.60.1)
                          |
                          |
   +----------------------+----------------------+
   |                                             |
 NAT A (外网IP:202.187.45.3)                 NAT B (外网IP:187.34.1.56)
   |   (内网IP:192.168.0.1)                      | (内网IP:192.168.0.1)
   |                                             |
Client A  (192.168.0.20:4000)             Client B (192.168.0.10:40000)

    首先,Client A登录服务器,NAT A为这次的Session分配了一个端口60000,那么Server S收到的Client A的地址是202.187.45.3:60000,这就是Client A的外网地址了。同样,Client B登录Server S,NAT B给此次Session分配的端口是40000,那么Server S收到的B的地址是187.34.1.56:40000。
    此时,Client A与Client B都可以与Server S通信了。如果Client A此时想直接发送信息给Client B,那么他可以从Server S那儿获得B的公网地址187.34.1.56:40000,是不是Client A向这个地址发送信息Client B就能收到了呢?答案是不行,因为如果这样发送信息,NAT B会将这个信息丢弃(因为这样的信息是不请自来的,为了安全,大多数NAT都会执行丢弃动作)。现在我们需要的是在NAT B上打一个方向为202.187.45.3(即Client A的外网地址)的洞,那么Client A发送到187.34.1.56:40000的信息,Client B就能收到了。这个打洞命令由谁来发呢,呵呵,当然是Server S。
    总结一下这个过程:如果Client A想向Client B发送信息,那么Client A发送命令给Server S,请求Server S命令Client B向Client A方向打洞。呵呵,是不是很绕口,不过没关系,想一想就很清楚了,何况还有源代码呢(侯老师说过:在源代码面前没有秘密 8)),然后Client A就可以通过Client B的外网地址与Client B通信了。
   
    注意:以上过程只适合于Cone NAT的情况,如果是Symmetric NAT,那么当Client B向Client A打洞的端口已经重新分配了,Client B将无法知道这个端口(如果Symmetric NAT的端口是顺序分配的,那么我们或许可以猜测这个端口号,可是由于可能导致失败的因素太多,我们不推荐这种猜测端口的方法)。
   
    下面是一个模拟P2P聊天的过程的源代码,过程很简单,P2PServer运行在一个拥有公网IP的计算机上,P2PClient运行在两个不同的NAT 后(注意,如果两个客户端运行在一个NAT后,本程序很可能不能运行正常,这取决于你的NAT是否支持loopback translation,详见http://midcom-p2p.sourceforge.net/draft-ford-midcom-p2p-01.txt,当然,此问题可以通过双方先尝试连接对方的内网IP来解决,但是这个代码只是为了验证原理,并没有处理这些问题),后登录的计算机可以获得先登录计算机的用户名,后登录的计算机通过send username message的格式来发送消息。如果发送成功,说明你已取得了直接与对方连接的成功。
    程序现在支持三个命令:send , getu , exit
   
    send格式:send username message
    功能:发送信息给username
   
    getu格式:getu
    功能:获得当前服务器用户列表
   
    exit格式:exit
    功能:注销与服务器的连接(服务器不会自动监测客户是否吊线)
       
    代码很短,相信很容易懂,如果有什么问题,可以给我发邮件zhouhuis22@sina.com  或者在CSDN上发送短消息。同时,欢迎转发此文,但希望保留作者版权8-)。
   
    最后感谢CSDN网友 PiggyXP 和 Seilfer的测试帮助

P2PServer.c

/* P2P 程序服务端
 *
 * 文件名:P2PServer.c
 *
 * 日期:2004-5-21
 *
 * 作者:shootingstars(zhouhuis22@sina.com)
 *
 */
#pragma comment(lib, "ws2_32.lib")

#include "windows.h"
#include "..\proto.h"
#include "..\Exception.h"

UserList ClientList;

void InitWinSock()
{
 WSADATA wsaData;

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
 {
  printf("Windows sockets 2.2 startup");
  throw Exception("");
 }
 else{
  printf("Using %s (Status: %s)\n",
   wsaData.szDescription, wsaData.szSystemStatus);
  printf("with API versions %d.%d to %d.%d\n\n",
   LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion),
   LOBYTE(wsaData.wHighVersion), HIBYTE(wsaData.wHighVersion));
 
 }
}

SOCKET mksock(int type)
{
 SOCKET sock = socket(AF_INET, type, 0);
 if (sock < 0)
 {
        printf("create socket error");
  throw Exception("");
 }
 return sock;
}

stUserListNode GetUser(char *username)
{
 for(UserList::iterator UserIterator=ClientList.begin();
      UserIterator!=ClientList.end();
       ++UserIterator)
 {
  if( strcmp( ((*UserIterator)->userName), username) == 0 )
   return *(*UserIterator);
 }
 throw Exception("not find this user");
}

int main(int argc, char* argv[])
{
 try{
  InitWinSock();
 
  SOCKET PrimaryUDP;
  PrimaryUDP = mksock(SOCK_DGRAM);

  sockaddr_in local;
  local.sin_family=AF_INET;
  local.sin_port= htons(SERVER_PORT);
  local.sin_addr.s_addr = htonl(INADDR_ANY);
  int nResult=bind(PrimaryUDP,(sockaddr*)&local,sizeof(sockaddr));
  if(nResult==SOCKET_ERROR)
   throw Exception("bind error");

  sockaddr_in sender;
  stMessage recvbuf;
  memset(&recvbuf,0,sizeof(stMessage));

  // 开始主循环.
  // 主循环负责下面几件事情:
  // 一:读取客户端登陆和登出消息,记录客户列表
  // 二:转发客户p2p请求
  for(;;)
  {
   int dwSender = sizeof(sender);
   int ret = recvfrom(PrimaryUDP, (char *)&recvbuf, sizeof(stMessage), 0, (sockaddr *)&sender, &dwSender);
   if(ret <= 0)
   {
    printf("recv error");
    continue;
   }
   else
   {
    int messageType = recvbuf.iMessageType;
    switch(messageType){
    case LOGIN:
     {
      //  将这个用户的信息记录到用户列表中
      printf("has a user login : %s\n", recvbuf.message.loginmember.userName);
      stUserListNode *currentuser = new stUserListNode();
      strcpy(currentuser->userName, recvbuf.message.loginmember.userName);
      currentuser->ip = ntohl(sender.sin_addr.S_un.S_addr);
      currentuser->port = ntohs(sender.sin_port);
      
      ClientList.push_back(currentuser);

      // 发送已经登陆的客户信息
      int nodecount = (int)ClientList.size();
      sendto(PrimaryUDP, (const char*)&nodecount, sizeof(int), 0, (const sockaddr*)&sender, sizeof(sender));
      for(UserList::iterator UserIterator=ClientList.begin();
        UserIterator!=ClientList.end();
        ++UserIterator)
      {
       sendto(PrimaryUDP, (const char*)(*UserIterator), sizeof(stUserListNode), 0, (const sockaddr*)&sender, sizeof(sender));
      }

      break;
     }
    case LOGOUT:
     {
      // 将此客户信息删除
      printf("has a user logout : %s\n", recvbuf.message.logoutmember.userName);
      UserList::iterator removeiterator = NULL;
      for(UserList::iterator UserIterator=ClientList.begin();
       UserIterator!=ClientList.end();
       ++UserIterator)
      {
       if( strcmp( ((*UserIterator)->userName), recvbuf.message.logoutmember.userName) == 0 )
       {
        removeiterator = UserIterator;
        break;
       }
      }
      if(removeiterator != NULL)
       ClientList.remove(*removeiterator);
      break;
     }
    case P2PTRANS:
     {
      // 某个客户希望服务端向另外一个客户发送一个打洞消息
      printf("%s wants to p2p %s\n",inet_ntoa(sender.sin_addr),recvbuf.message.translatemessage.userName);
      stUserListNode node = GetUser(recvbuf.message.translatemessage.userName);
      sockaddr_in remote;
      remote.sin_family=AF_INET;
      remote.sin_port= htons(node.port);
      remote.sin_addr.s_addr = htonl(node.ip);

      in_addr tmp;
      tmp.S_un.S_addr = htonl(node.ip);
      printf("the address is %s,and port is %d\n",inet_ntoa(tmp), node.port);

      stP2PMessage transMessage;
      transMessage.iMessageType = P2PSOMEONEWANTTOCALLYOU;
      transMessage.iStringLen = ntohl(sender.sin_addr.S_un.S_addr);
      transMessage.Port = ntohs(sender.sin_port);
                       
      sendto(PrimaryUDP,(const char*)&transMessage, sizeof(transMessage), 0, (const sockaddr *)&remote, sizeof(remote));

      break;
     }
    
    case GETALLUSER:
     {
      int command = GETALLUSER;
      sendto(PrimaryUDP, (const char*)&command, sizeof(int), 0, (const sockaddr*)&sender, sizeof(sender));

      int nodecount = (int)ClientList.size();
      sendto(PrimaryUDP, (const char*)&nodecount, sizeof(int), 0, (const sockaddr*)&sender, sizeof(sender));

      for(UserList::iterator UserIterator=ClientList.begin();
        UserIterator!=ClientList.end();
        ++UserIterator)
      {
       sendto(PrimaryUDP, (const char*)(*UserIterator), sizeof(stUserListNode), 0, (const sockaddr*)&sender, sizeof(sender));
      }
      break;
     }
    }
   }
  }

 }
 catch(Exception &e)
 {
  printf(e.GetMessage());
  return 1;
 }

 return 0;
}

/* P2P 程序客户端
 *
 * 文件名:P2PClient.c
 *
 * 日期:2004-5-21
 *
 * 作者:shootingstars(zhouhuis22@sina.com)
 *
 */

#pragma comment(lib,"ws2_32.lib")

#include "windows.h"
#include "..\proto.h"
#include "..\Exception.h"
#include <iostream>
using namespace std;

UserList ClientList;

 

#define COMMANDMAXC 256
#define MAXRETRY    5

SOCKET PrimaryUDP;
char UserName[10];
char ServerIP[20];

bool RecvedACK;

void InitWinSock()
{
 WSADATA wsaData;

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
 {
  printf("Windows sockets 2.2 startup");
  throw Exception("");
 }
 else{
  printf("Using %s (Status: %s)\n",
   wsaData.szDescription, wsaData.szSystemStatus);
  printf("with API versions %d.%d to %d.%d\n\n",
   LOBYTE(wsaData.wVersion), HIBYTE(wsaData.wVersion),
   LOBYTE(wsaData.wHighVersion), HIBYTE(wsaData.wHighVersion));
 }
}

SOCKET mksock(int type)
{
 SOCKET sock = socket(AF_INET, type, 0);
 if (sock < 0)
 {
        printf("create socket error");
  throw Exception("");
 }
 return sock;
}

stUserListNode GetUser(char *username)
{
 for(UserList::iterator UserIterator=ClientList.begin();
      UserIterator!=ClientList.end();
       ++UserIterator)
 {
  if( strcmp( ((*UserIterator)->userName), username) == 0 )
   return *(*UserIterator);
 }
 throw Exception("not find this user");
}

void BindSock(SOCKET sock)
{
 sockaddr_in sin;
 sin.sin_addr.S_un.S_addr = INADDR_ANY;
 sin.sin_family = AF_INET;
 sin.sin_port = 0;
 
 if (bind(sock, (struct sockaddr*)&sin, sizeof(sin)) < 0)
  throw Exception("bind error");
}

void ConnectToServer(SOCKET sock,char *username, char *serverip)
{
 sockaddr_in remote;
 remote.sin_addr.S_un.S_addr = inet_addr(serverip);
 remote.sin_family = AF_INET;
 remote.sin_port = htons(SERVER_PORT);
 
 stMessage sendbuf;
 sendbuf.iMessageType = LOGIN;
 strncpy(sendbuf.message.loginmember.userName, username, 10);

 sendto(sock, (const char*)&sendbuf, sizeof(sendbuf), 0, (const sockaddr*)&remote,sizeof(remote));

 int usercount;
 int fromlen = sizeof(remote);
 int iread = recvfrom(sock, (char *)&usercount, sizeof(int), 0, (sockaddr *)&remote, &fromlen);
 if(iread<=0)
 {
  throw Exception("Login error\n");
 }

 // 登录到服务端后,接收服务端发来的已经登录的用户的信息
 cout<<"Have "<<usercount<<" users logined server:"<<endl;
 for(int i = 0;i<usercount;i++)
 {
  stUserListNode *node = new stUserListNode;
  recvfrom(sock, (char*)node, sizeof(stUserListNode), 0, (sockaddr *)&remote, &fromlen);
  ClientList.push_back(node);
  cout<<"Username:"<<node->userName<<endl;
  in_addr tmp;
  tmp.S_un.S_addr = htonl(node->ip);
  cout<<"UserIP:"<<inet_ntoa(tmp)<<endl;
  cout<<"UserPort:"<<node->port<<endl;
  cout<<""<<endl;
 }
}

void OutputUsage()
{
 cout<<"You can input you command:\n"
  <<"Command Type:\"send\",\"exit\",\"getu\"\n"
  <<"Example : send Username Message\n"
  <<"          exit\n"
  <<"          getu\n"
  <<endl;
}

/* 这是主要的函数:发送一个消息给某个用户(C)
 *流程:直接向某个用户的外网IP发送消息,如果此前没有联系过
 *      那么此消息将无法发送,发送端等待超时。
 *      超时后,发送端将发送一个请求信息到服务端,
 *      要求服务端发送给客户C一个请求,请求C给本机发送打洞消息
 *      以上流程将重复MAXRETRY次
 */
bool SendMessageTo(char *UserName, char *Message)
{
 char realmessage[256];
 unsigned int UserIP;
 unsigned short UserPort;
 bool FindUser = false;
 for(UserList::iterator UserIterator=ClientList.begin();
      UserIterator!=ClientList.end();
      ++UserIterator)
 {
  if( strcmp( ((*UserIterator)->userName), UserName) == 0 )
  {
   UserIP = (*UserIterator)->ip;
   UserPort = (*UserIterator)->port;
   FindUser = true;
  }
 }

 if(!FindUser)
  return false;

 strcpy(realmessage, Message);
 for(int i=0;i<MAXRETRY;i++)
 {
  RecvedACK = false;

  sockaddr_in remote;
  remote.sin_addr.S_un.S_addr = htonl(UserIP);
  remote.sin_family = AF_INET;
  remote.sin_port = htons(UserPort);
  stP2PMessage MessageHead;
  MessageHead.iMessageType = P2PMESSAGE;
  MessageHead.iStringLen = (int)strlen(realmessage)+1;
  int isend = sendto(PrimaryUDP, (const char *)&MessageHead, sizeof(MessageHead), 0, (const sockaddr*)&remote, sizeof(remote));
  isend = sendto(PrimaryUDP, (const char *)&realmessage, MessageHead.iStringLen, 0, (const sockaddr*)&remote, sizeof(remote));
 
  // 等待接收线程将此标记修改
  for(int j=0;j<10;j++)
  {
   if(RecvedACK)
    return true;
   else
    Sleep(300);
  }

  // 没有接收到目标主机的回应,认为目标主机的端口映射没有
  // 打开,那么发送请求信息给服务器,要服务器告诉目标主机
  // 打开映射端口(UDP打洞)
  sockaddr_in server;
  server.sin_addr.S_un.S_addr = inet_addr(ServerIP);
  server.sin_family = AF_INET;
  server.sin_port = htons(SERVER_PORT);
 
  stMessage transMessage;
  transMessage.iMessageType = P2PTRANS;
  strcpy(transMessage.message.translatemessage.userName, UserName);

  sendto(PrimaryUDP, (const char*)&transMessage, sizeof(transMessage), 0, (const sockaddr*)&server, sizeof(server));
  Sleep(100);// 等待对方先发送信息。
 }
 return false;
}

// 解析命令,暂时只有exit和send命令
// 新增getu命令,获取当前服务器的所有用户
void ParseCommand(char * CommandLine)
{
 if(strlen(CommandLine)<4)
  return;
 char Command[10];
 strncpy(Command, CommandLine, 4);
 Command[4]='\0';

 if(strcmp(Command,"exit")==0)
 {
  stMessage sendbuf;
  sendbuf.iMessageType = LOGOUT;
  strncpy(sendbuf.message.logoutmember.userName, UserName, 10);
  sockaddr_in server;
  server.sin_addr.S_un.S_addr = inet_addr(ServerIP);
  server.sin_family = AF_INET;
  server.sin_port = htons(SERVER_PORT);

  sendto(PrimaryUDP,(const char*)&sendbuf, sizeof(sendbuf), 0, (const sockaddr *)&server, sizeof(server));
  shutdown(PrimaryUDP, 2);
  closesocket(PrimaryUDP);
  exit(0);
 }
 else if(strcmp(Command,"send")==0)
 {
  char sendname[20];
  char message[COMMANDMAXC];
  int i;
  for(i=5;;i++)
  {
   if(CommandLine[i]!=' ')
    sendname[i-5]=CommandLine[i];
   else
   {
    sendname[i-5]='\0';
    break;
   }
  }
  strcpy(message, &(CommandLine[i+1]));
  if(SendMessageTo(sendname, message))
   printf("Send OK!\n");
  else
   printf("Send Failure!\n");
 }
 else if(strcmp(Command,"getu")==0)
 {
  int command = GETALLUSER;
  sockaddr_in server;
  server.sin_addr.S_un.S_addr = inet_addr(ServerIP);
  server.sin_family = AF_INET;
  server.sin_port = htons(SERVER_PORT);

  sendto(PrimaryUDP,(const char*)&command, sizeof(command), 0, (const sockaddr *)&server, sizeof(server));
 }
}

// 接受消息线程
DWORD WINAPI RecvThreadProc(LPVOID lpParameter)
{
 sockaddr_in remote;
 int sinlen = sizeof(remote);
 stP2PMessage recvbuf;
 for(;;)
 {
  int iread = recvfrom(PrimaryUDP, (char *)&recvbuf, sizeof(recvbuf), 0, (sockaddr *)&remote, &sinlen);
  if(iread<=0)
  {
   printf("recv error\n");
   continue;
  }
  switch(recvbuf.iMessageType)
  {
  case P2PMESSAGE:
   {
    // 接收到P2P的消息
    char *comemessage= new char[recvbuf.iStringLen];
    int iread1 = recvfrom(PrimaryUDP, comemessage, 256, 0, (sockaddr *)&remote, &sinlen);
    comemessage[iread1-1] = '\0';
    if(iread1<=0)
     throw Exception("Recv Message Error\n");
    else
    {
     printf("Recv a Message:%s\n",comemessage);
     
     stP2PMessage sendbuf;
     sendbuf.iMessageType = P2PMESSAGEACK;
     sendto(PrimaryUDP, (const char*)&sendbuf, sizeof(sendbuf), 0, (const sockaddr*)&remote, sizeof(remote));
    }

    delete []comemessage;
    break;

   }
  case P2PSOMEONEWANTTOCALLYOU:
   {
    // 接收到打洞命令,向指定的IP地址打洞
    printf("Recv p2someonewanttocallyou data\n");
    sockaddr_in remote;
    remote.sin_addr.S_un.S_addr = htonl(recvbuf.iStringLen);
    remote.sin_family = AF_INET;
    remote.sin_port = htons(recvbuf.Port);

    // UDP hole punching
    stP2PMessage message;
    message.iMessageType = P2PTRASH;
    sendto(PrimaryUDP, (const char *)&message, sizeof(message), 0, (const sockaddr*)&remote, sizeof(remote));
               
    break;
   }
  case P2PMESSAGEACK:
   {
    // 发送消息的应答
    RecvedACK = true;
    break;
   }
  case P2PTRASH:
   {
    // 对方发送的打洞消息,忽略掉。
    //do nothing ...
    printf("Recv p2ptrash data\n");
    break;
   }
  case GETALLUSER:
   {
    int usercount;
    int fromlen = sizeof(remote);
    int iread = recvfrom(PrimaryUDP, (char *)&usercount, sizeof(int), 0, (sockaddr *)&remote, &fromlen);
    if(iread<=0)
    {
     throw Exception("Login error\n");
    }
    
    ClientList.clear();

    cout<<"Have "<<usercount<<" users logined server:"<<endl;
    for(int i = 0;i<usercount;i++)
    {
     stUserListNode *node = new stUserListNode;
     recvfrom(PrimaryUDP, (char*)node, sizeof(stUserListNode), 0, (sockaddr *)&remote, &fromlen);
     ClientList.push_back(node);
     cout<<"Username:"<<node->userName<<endl;
     in_addr tmp;
     tmp.S_un.S_addr = htonl(node->ip);
     cout<<"UserIP:"<<inet_ntoa(tmp)<<endl;
     cout<<"UserPort:"<<node->port<<endl;
     cout<<""<<endl;
    }
    break;
   }
  }
 }
}


int main(int argc, char* argv[])
{
 try
 {
  InitWinSock();
 
  PrimaryUDP = mksock(SOCK_DGRAM);
  BindSock(PrimaryUDP);

  cout<<"Please input server ip:";
  cin>>ServerIP;

  cout<<"Please input your name:";
  cin>>UserName;

  ConnectToServer(PrimaryUDP, UserName, ServerIP);

  HANDLE threadhandle = CreateThread(NULL, 0, RecvThreadProc, NULL, NULL, NULL);
  CloseHandle(threadhandle);
  OutputUsage();

  for(;;)
  {
   char Command[COMMANDMAXC];
   gets(Command);
   ParseCommand(Command);
  }
 }
 catch(Exception &e)
 {
  printf(e.GetMessage());
  return 1;
 }
 return 0;
}

/* 异常类
 *
 * 文件名:Exception.h
 *
 * 日期:2004.5.5
 *
 * 作者:shootingstars(zhouhuis22@sina.com)
 */

#ifndef __HZH_Exception__
#define __HZH_Exception__

#define EXCEPTION_MESSAGE_MAXLEN 256
#include "string.h"

class Exception
{
private:
 char m_ExceptionMessage[EXCEPTION_MESSAGE_MAXLEN];
public:
 Exception(char *msg)
 {
  strncpy(m_ExceptionMessage, msg, EXCEPTION_MESSAGE_MAXLEN);
 }

 char *GetMessage()
 {
  return m_ExceptionMessage;
 }
};

#endif

/* P2P 程序传输协议
 *
 * 日期:2004-5-21
 *
 * 作者:shootingstars(zhouhuis22@sina.com)
 *
 */

#pragma once
#include <list>

// 定义iMessageType的值
#define LOGIN 1
#define LOGOUT 2
#define P2PTRANS 3
#define GETALLUSER  4

// 服务器端口
#define SERVER_PORT 2280

// Client登录时向服务器发送的消息
struct stLoginMessage
{
 char userName[10];
 char password[10];
};

// Client注销时发送的消息
struct stLogoutMessage
{
 char userName[10];
};

// Client向服务器请求另外一个Client(userName)向自己方向发送UDP打洞消息
struct stP2PTranslate
{
 char userName[10];
};

// Client向服务器发送的消息格式
struct stMessage
{
 int iMessageType;
 union _message
 {
  stLoginMessage loginmember;
  stLogoutMessage logoutmember;
  stP2PTranslate translatemessage;
 }message;
};

// 客户节点信息
struct stUserListNode
{
 char userName[10];
 unsigned int ip;
 unsigned short port;
};

// Server向Client发送的消息
struct stServerToClient
{
 int iMessageType;
 union _message
 {
  stUserListNode user;
 }message;

};

//======================================
// 下面的协议用于客户端之间的通信
//======================================
#define P2PMESSAGE 100               // 发送消息
#define P2PMESSAGEACK 101            // 收到消息的应答
#define P2PSOMEONEWANTTOCALLYOU 102  // 服务器向客户端发送的消息
                                     // 希望此客户端发送一个UDP打洞包
#define P2PTRASH        103          // 客户端发送的打洞包,接收端应该忽略此消息

// 客户端之间发送消息格式
struct stP2PMessage
{
 int iMessageType;
 int iStringLen;         // or IP address
 unsigned short Port;
};

using namespace std;
typedef list<stUserListNode *> UserList;

工程下载地址:http://www.ppcn.net/upload/2004_05/04052509317298.rar

posted @ 2007-06-12 13:23 shootingstars 阅读(4272) | 评论 (3) | 编辑 收藏

2006年2月17日

在Windows下编译OpenSSL(VS2005)

最近学习PKI,在使用vs2005编译openssl-0.9.8a时遇到了一些问题:
详情请看:http://shootingstars.cnblogs.com/archive/2006/02/17/332276.html

posted @ 2006-02-17 09:46 shootingstars 阅读(905) | 评论 (0) | 编辑 收藏

仅列出标题  
 
Powered by:
C++博客
Copyright © shootingstars