makefile详解(六)

Posted on 2007-07-17 17:42 阿龙 阅读(781) 评论(0)  编辑 收藏 引用

九、控制make的函数

make 提供了一些函数来控制 make 的运行。通常,你需要检测一些运行 Makefile 时的运
行时信息,并且根据这些信息来决定,你是让make继续执行,还是停止。
$(error <text ...> )
产生一个致命的错误,<text...>是错误信息。注意,error函数不会在一被使用就会产生
错误信息,所以如果你把其定义在某个变量中,并在后续的脚本中使用这个变量,那
么也是可以的。例如:
示例一:
ifdef ERROR_001
$(error error is $(ERROR_001))
endif
示例二:
ERR = $(error found an error!)
.PHONY: err


err: ; $(ERR)
示例一会在变量ERROR_001定义了后执行时产生error调用,而示例二则在目录err被

执行时才发生error调用。


$(warning <text ...> )


这个函数很像error函数,只是它并不会让make退出,只是输出一段警告信息,而
make 继续执行。
make 的运行
——————


一般来说,最简单的就是直接在命令行下输入make命令,make命令会找当前目录的
makefile 来执行,一切都是自动的。但也有时你也许只想让 make 重编译某些文件,而
不是整个工程,而又有的时候你有几套编译规则,你想在不同的时候使用不同的编译
规则,等等。本章节就是讲述如何使用make命令的。


一、make的退出码


make 命令执行后有三个退出码:


0 —— 表示成功执行。
1 —— 如果 make 运行时出现任何错误,其返回 1。
2 —— 如果你使用了 make 的“-q”选项,并且 make 使得一些目标不需要更新,那么返
回2。


Make 的相关参数我们会在后续章节中讲述。

二、指定Makefile


前面我们说过,GNUmake找寻默认的Makefile的规则是在当前目录下依次找三个文
件——“GNUmakefile”、“makefile”和“Makefile”。其按顺序找这三个文件,一旦找到,
就开始读取这个文件并执行。


当前,我们也可以给make命令指定一个特殊名字的Makefile。要达到这个功能,我们
要使用make的“-f”或是“--file”参数(“--makefile”参数也行)。例如,我们有个
makefile 的名字是“hchen.mk”,那么,我们可以这样来让 make 来执行这个文件:


make –f hchen.mk


如果在make的命令行是,你不只一次地使用了“-f”参数,那么,所有指定的makefile

将会被连在一起传递给make执行。

 

三、指定目标


一般来说,make的最终目标是makefile中的第一个目标,而其它目标一般是由这个目
标连带出来的。这是make的默认行为。当然,一般来说,你的makefile中的第一个目标
是由许多个目标组成,你可以指示make,让其完成你所指定的目标。要达到这一目的
很简单,需在make命令后直接跟目标的名字就可以完成(如前面提到的“makeclean”
形式)


任何在makefile中的目标都可以被指定成终极目标,但是除了以“-”打头,或是包含
了“=”的目标,因为有这些字符的目标,会被解析成命令行参数或是变量。甚至没有被
我们明确写出来的目标也可以成为make的终极目标,也就是说,只要make可以找到
其隐含规则推导规则,那么这个隐含目标同样可以被指定成终极目标。


有一个make的环境变量叫“MAKECMDGOALS”,这个变量中会存放你所指定的终极
目标的列表,如果在命令行上,你没有指定目标,那么,这个变量是空值。这个变量可
以让你使用在一些比较特殊的情形下。比如下面的例子:


sources = foo.c bar.c
ifneq ( $(MAKECMDGOALS),clean)
include $(sources:.c=.d)
endif


基于上面的这个例子,只要我们输入的命令不是“makeclean”,那么makefile会自动
包含“foo.d”和“bar.d”这两个makefile。


使用指定终极目标的方法可以很方便地让我们编译我们的程序,例如下面这个例子:


.PHONY: all
all: prog1 prog2 prog3 prog4


从这个例子中,我们可以看到,这个 makefile 中有四个需要编译的程序——
“prog1”,“prog2”,“prog3”和“prog4”,我们可以使用“makeall”命令来编译所有的
目标(如果把all置成第一个目标,那么只需执行“make”),我们也可以使用“make
prog2”来单独编译目标“prog2”。


即然make可以指定所有makefile中的目标,那么也包括“伪目标”,于是我们可以根
据这种性质来让我们的makefile根据指定的不同的目标来完成不同的事。在Unix世界
中,软件发布时,特别是GNU这种开源软件的发布时,其makefile都包含了编译、安
装、打包等功能。我们可以参照这种规则来书写我们的makefile中的目标。


“all”

这个伪目标是所有目标的目标,其功能一般是编译所有的目标。
“clean”
这个伪目标功能是删除所有被make创建的文件。
“install”
这个伪目标功能是安装已编译好的程序,其实就是把目标执行文件拷贝到指定的目标
中去。
“print”
这个伪目标的功能是例出改变过的源文件。
“tar”
这个伪目标功能是把源程序打包备份。也就是一个tar文件。
“dist”
这个伪目标功能是创建一个压缩文件,一般是把tar文件压成Z文件。或是gz文件。
“TAGS”
这个伪目标功能是更新所有的目标,以备完整地重编译使用。
“check”和“test”
这两个伪目标一般用来测试makefile的流程。


当然一个项目的makefile中也不一定要书写这样的目标,这些东西都是GNU的东西,
但是我想,GNU搞出这些东西一定有其可取之处(等你的UNIX下的程序文件一多时
你就会发现这些功能很有用了),这里只不过是说明了,如果你要书写这种功能,最
好使用这种名字命名你的目标,这样规范一些,规范的好处就是——不用解释,大家
都明白。而且如果你的makefile中有这些功能,一是很实用,二是可以显得你的
makefile 很专业(不是那种初学者的作品)。

四、检查规则


有时候,我们不想让我们的makefile中的规则执行起来,我们只想检查一下我们的命
令,或是执行的序列。于是我们可以使用make命令的下述参数:


“-n”
“--just-print”
“--dry-run”
“--recon”
不执行参数,这些参数只是打印命令,不管目标是否更新,把规则和连带规则下的命
令打印出来,但不执行,这些参数对于我们调试makefile很有用处。


“-t”
“--touch”
这个参数的意思就是把目标文件的时间更新,但不更改目标文件。也就是说,make假
装编译目标,但不是真正的编译目标,只是把目标变成已编译过的状态。


“-q”
“--question”

这个参数的行为是找目标的意思,也就是说,如果目标存在,那么其什么也不会输出,
当然也不会执行编译,如果目标不存在,其会打印出一条出错信息。


“-W <file>”
“--what-if=<file>”
“--assume-new=<file>”
“--new-file=<file>”
这个参数需要指定一个文件。一般是是源文件(或依赖文件),Make会根据规则推导
来运行依赖于这个文件的命令,一般来说,可以和“-n”参数一同使用,来查看这个依
赖文件所发生的规则命令。


另外一个很有意思的用法是结合“-p”和“-v”来输出makefile被执行时的信息(这个将
在后面讲述)。

五、make的参数


下面列举了所有GNUmake3.80版的参数定义。其它版本和产商的make大同小异,不
过其它产商的make的具体参数还是请参考各自的产品文档。


“-b”
“-m”
这两个参数的作用是忽略和其它版本make的兼容性。


“-B”
“--always-make”
认为所有的目标都需要更新(重编译)。


“-C <dir>”
“--directory=<dir>”
指定读取makefile的目录。如果有多个“-C”参数,make的解释是后面的路径以前面的
作为相对路径,并以最后的目录作为被指定目录。如:“make–C~hchen/test–Cprog”
等价于“make–C~hchen/test/prog”。


“—debug[=<options>]”
输出make的调试信息。它有几种不同的级别可供选择,如果没有参数,那就是输出最
简单的调试信息。下面是<options>的取值:
a —— 也就是 all,输出所有的调试信息。(会非常的多)
b —— 也就是 basic,只输出简单的调试信息。即输出不需要重编译的目标。
v —— 也就是 verbose,在 b 选项的级别之上。输出的信息包括哪个 makefile 被解析,不
需要被重编译的依赖文件(或是依赖目标)等。
i —— 也就是 implicit,输出所以的隐含规则。
j —— 也就是 jobs,输出执行规则中命令的详细信息,如命令的 PID、返回码等。
m —— 也就是 makefile,输出 make 读取 makefile,更新 makefile,执行 makefile 的信

息。


“-d”
相当于“--debug=a”。


“-e”
“--environment-overrides”
指明环境变量的值覆盖makefile中定义的变量的值。


“-f=<file>”
“--file=<file>”
“--makefile=<file>”
指定需要执行的makefile。


“-h”
“--help”
显示帮助信息。


“-i”
“--ignore-errors”
在执行时忽略所有的错误。


“-I <dir>”
“--include-dir=<dir>”
指定一个被包含makefile的搜索目标。可以使用多个“-I”参数来指定多个目录。


“-j [<jobsnum>]”
“--jobs[=<jobsnum>]”
指同时运行命令的个数。如果没有这个参数,make运行命令时能运行多少就运行多少。
如果有一个以上的“-j”参数,那么仅最后一个“-j”才是有效的。(注意这个参数在MS-
DOS 中是无用的)


“-k”
“--keep-going”
出错也不停止运行。如果生成一个目标失败了,那么依赖于其上的目标就不会被执行了。

 

“-l <load>”
“--load-average[=<load]”
“—max-load[=<load>]”
指定make运行命令的负载。


“-n”
“--just-print”

“--dry-run”
“--recon”
仅输出执行过程中的命令序列,但并不执行。


“-o <file>”
“--old-file=<file>”
“--assume-old=<file>”
不重新生成的指定的<file>,即使这个目标的依赖文件新于它。


“-p”
“--print-data-base”
输出makefile中的所有数据,包括所有的规则和变量。这个参数会让一个简单的
makefile 都会输出一堆信息。如果你只是想输出信息而不想执行 makefile,你可以使用
“make -qp”命令。如果你想查看执行makefile前的预设变量和规则,你可以使用
“make–p–f/dev/null”。这个参数输出的信息会包含着你的makefile文件的文件名和行
号,所以,用这个参数来调试你的makefile会是很有用的,特别是当你的环境变量很
复杂的时候。


“-q”
“--question”
不运行命令,也不输出。仅仅是检查所指定的目标是否需要更新。如果是0则说明要更
新,如果是2则说明有错误发生。


“-r”
“--no-builtin-rules”
禁止make使用任何隐含规则。


“-R”
“--no-builtin-variabes”
禁止make使用任何作用于变量上的隐含规则。


“-s”
“--silent”
“--quiet”
在命令运行时不输出命令的输出。


“-S”
“--no-keep-going”
“--stop”
取消“-k”选项的作用。因为有些时候,make的选项是从环境变量“MAKEFLAGS”中
继承下来的。所以你可以在命令行中使用这个参数来让环境变量中的“-k”选项失效。


“-t”
“--touch”

相当于UNIX的touch命令,只是把目标的修改日期变成最新的,也就是阻止生成目标
的命令运行。


“-v”
“--version”
输出make程序的版本、版权等关于make的信息。


“-w”
“--print-directory”
输出运行makefile之前和之后的信息。这个参数对于跟踪嵌套式调用make时很有用。


“--no-print-directory”
禁止“-w”选项。


“-W <file>”
“--what-if=<file>”
“--new-file=<file>”
“--assume-file=<file>”
假定目标<file>需要更新,如果和“-n”选项使用,那么这个参数会输出该目标更新时
的运行动作。如果没有“-n”那么就像运行UNIX的“touch”命令一样,使得<file>的修
改时间为当前时间。


“--warn-undefined-variables”
只要make发现有未定义的变量,那么就输出警告信息。
隐含规则
————


在我们使用Makefile时,有一些我们会经常使用,而且使用频率非常高的东西,比如,
我们编译C/C++的源程序为中间目标文件(Unix下是[.o]文件,Windows下是[.obj]文
件)。本章讲述的就是一些在Makefile中的“隐含的”,早先约定了的,不需要我们再
写出来的规则。


“隐含规则”也就是一种惯例,make 会按照这种“惯例”心照不喧地来运行,那怕我
们的Makefile中没有书写这样的规则。例如,把[.c]文件编译成[.o]文件这一规则,你根
本就不用写出来,make会自动推导出这种规则,并生成我们需要的[.o]文件。


“隐含规则”会使用一些我们系统变量,我们可以改变这些系统变量的值来定制隐含规
则的运行时的参数。如系统变量“CFLAGS”可以控制编译时的编译器参数。


我们还可以通过“模式规则”的方式写下自己的隐含规则。用“后缀规则”来定义隐含
规则会有许多的限制。使用“模式规则”会更回得智能和清楚,但“后缀规则”可以用
来保证我们Makefile的兼容性。
我们了解了“隐含规则”,可以让其为我们更好的服务,也会让我们知道一些“约定
俗成”了的东西,而不至于使得我们在运行Makefile时出现一些我们觉得莫名其妙的

东西。当然,任何事物都是矛盾的,水能载舟,亦可覆舟,所以,有时候“隐含规则”
也会给我们造成不小的麻烦。只有了解了它,我们才能更好地使用它。

 

一、使用隐含规则


如果要使用隐含规则生成你需要的目标,你所需要做的就是不要写出这个目标的规则。
那么,make会试图去自动推导产生这个目标的规则和命令,如果make可以自动推导
生成这个目标的规则和命令,那么这个行为就是隐含规则的自动推导。当然,隐含规则
是make事先约定好的一些东西。例如,我们有下面的一个Makefile:


foo : foo.o bar.o
cc –o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)


我们可以注意到,这个Makefile中并没有写下如何生成foo.o和bar.o这两目标的规则
和命令。因为make的“隐含规则”功能会自动为我们自动去推导这两个目标的依赖目
标和生成命令。


make 会在自己的“隐含规则”库中寻找可以用的规则,如果找到,那么就会使用。如
果找不到,那么就会报错。在上面的那个例子中,make调用的隐含规则是,把[.o]的目
标的依赖文件置成[.c],并使用C的编译命令“cc–c$(CFLAGS)[.c]”来生成[.o]的目标。
也就是说,我们完全没有必要写下下面的两条规则:


foo.o : foo.c
cc –c foo.c $(CFLAGS)
bar.o : bar.c
cc –c bar.c $(CFLAGS)


因为,这已经是“约定”好了的事了,make和我们约定好了用C编译器“cc”生成[.o]
文件的规则,这就是隐含规则。


当然,如果我们为[.o]文件书写了自己的规则,那么make就不会自动推导并调用隐含
规则,它会按照我们写好的规则忠实地执行。


还有,在make的“隐含规则库”中,每一条隐含规则都在库中有其顺序,越靠前的则
是越被经常使用的,所以,这会导致我们有些时候即使我们显示地指定了目标依赖,
make 也不会管。如下面这条规则(没有命令):


foo.o : foo.p


依赖文件“foo.p”(Pascal程序的源文件)有可能变得没有意义。如果目录下存在了
“foo.c”文件,那么我们的隐含规则一样会生效,并会通过“foo.c”调用C的编译器生
成foo.o文件。因为,在隐含规则中,Pascal的规则出现在C的规则之后,所以,make
找到可以生成foo.o的C的规则就不再寻找下一条规则了。如果你确实不希望任何隐含

规则推导,那么,你就不要只写出“依赖规则”,而不写命令。

 

二、隐含规则一览


这里我们将讲述所有预先设置(也就是make内建)的隐含规则,如果我们不明确地写
下规则,那么,make就会在这些规则中寻找所需要规则和命令。当然,我们也可以使
用make的参数“-r”或“--no-builtin-rules”选项来取消所有的预设置的隐含规则。


当然,即使是我们指定了“-r”参数,某些隐含规则还是会生效,因为有许多的隐含规
则都是使用了“后缀规则”来定义的,所以,只要隐含规则中有“后缀列表”(也就
一系统定义在目标.SUFFIXES的依赖目标),那么隐含规则就会生效。默认的后缀列表
是:.out, .a,.ln, .o, .c, .cc, .C,.p, .f, .F, .r,.y,.l, .s, .S,.mod, .sym,.def, .h, .info,.dvi, .tex, .
texinfo, .texi, .txinfo, .w, .ch .web, .sh, .elc, .el。具体的细节,我们会在后面讲述。


还是先来看一看常用的隐含规则吧。


1、编译 C 程序的隐含规则。
“<n>.o”的目标的依赖目标会自动推导为“<n>.c”,并且其生成命令是“$(CC) –c
$(CPPFLAGS) $(CFLAGS)”


2、编译 C++程序的隐含规则。
“<n>.o”的目标的依赖目标会自动推导为“<n>.cc”或是“<n>.C”,并且其生成命令是“
$(CXX) –c $(CPPFLAGS) $(CFLAGS)”。(建议使用“.cc”作为 C++源文件的后缀,而不
是“.C”)


3、编译 Pascal 程序的隐含规则。
“<n>.o”的目标的依赖目标会自动推导为“<n>.p”,并且其生成命令是“$(PC) –c
$(PFLAGS)”。


4、编译 Fortran/Ratfor 程序的隐含规则。
“<n>.o”的目标的依赖目标会自动推导为“<n>.r”或“<n>.F”或“<n>.f”,并且其生成命
令是:
“.f” “$(FC) –c $(FFLAGS)”
“.F” “$(FC) –c $(FFLAGS) $(CPPFLAGS)”
“.f” “$(FC) –c $(FFLAGS) $(RFLAGS)”


5、预处理 Fortran/Ratfor 程序的隐含规则。
“<n>.f”的目标的依赖目标会自动推导为“<n>.r”或“<n>.F”。这个规则只是转换 Ratfor
或有预处理的Fortran程序到一个标准的Fortran程序。其使用的命令是:
“.F” “$(FC) –F $(CPPFLAGS) $(FFLAGS)”
“.r” “$(FC) –F $(FFLAGS) $(RFLAGS)”


6、编译 Modula-2 程序的隐含规则。

“<n>.sym”的目标的依赖目标会自动推导为“<n>.def”,并且其生成命令是:“$(M2C)
$(M2FLAGS) $(DEFFLAGS)”。“<n.o>” 的目标的依赖目标会自动推导为“<n>.mod”,
并且其生成命令是:“$(M2C)$(M2FLAGS)$(MODFLAGS)”。


7、汇编和汇编预处理的隐含规则。
“<n>.o” 的目标的依赖目标会自动推导为“<n>.s”,默认使用编译品“as”,并且其生成
命令是:“$(AS)$(ASFLAGS)”。“<n>.s”的目标的依赖目标会自动推导为“<n>.S”,
默认使用C预编译器“cpp”,并且其生成命令是:“$(AS)$(ASFLAGS)”。


8、链接 Object 文件的隐含规则。
“<n>”目标依赖于“<n>.o”,通过运行 C 的编译器来运行链接程序生成(一般是
“ld”),其生成命令是:“$(CC)$(LDFLAGS)<n>.o$(LOADLIBES)$(LDLIBS)”。这
个规则对于只有一个源文件的工程有效,同时也对多个Object文件(由不同的源文件
生成)的也有效。例如如下规则:


x : y.o z.o


并且“x.c”、“y.c”和“z.c”都存在时,隐含规则将执行如下命令:


cc -c x.c -o x.o
cc -c y.c -o y.o
cc -c z.c -o z.o
cc x.o y.o z.o -o x
rm -f x.o
rm -f y.o
rm -f z.o


如果没有一个源文件(如上例中的x.c)和你的目标名字(如上例中的x)相关联,那
么,你最好写出自己的生成规则,不然,隐含规则会报错的。


9、Yacc C 程序时的隐含规则。
“<n>.c”的依赖文件被自动推导为“n.y”(Yacc 生成的文件),其生成命令是:
“$(YACC)$(YFALGS)”。(“Yacc”是一个语法分析器,关于其细节请查看相关资料)


10、Lex C 程序时的隐含规则。
“<n>.c”的依赖文件被自动推导为“n.l”(Lex 生成的文件),其生成命令是:“$(LEX)
$(LFALGS)”。(关于“Lex”的细节请查看相关资料)


11、Lex Ratfor 程序时的隐含规则。
“<n>.r”的依赖文件被自动推导为“n.l”(Lex 生成的文件),其生成命令是:“$(LEX)
$(LFALGS)”。


12、从 C 程序、Yacc 文件或 Lex 文件创建 Lint 库的隐含规则。
“<n>.ln” (lint 生成的文件)的依赖文件被自动推导为“n.c”,其生成命令是:

“$(LINT)$(LINTFALGS)$(CPPFLAGS)-i”。对于“<n>.y”和“<n>.l”也是同样的规则。

 

三、隐含规则使用的变量


在隐含规则中的命令中,基本上都是使用了一些预先设置的变量。你可以在你的
makefile 中改变这些变量的值,或是在 make 的命令行中传入这些值,或是在你的环境
变量中设置这些值,无论怎么样,只要设置了这些特定的变量,那么其就会对隐含规
则起作用。当然,你也可以利用make的“-R”或“--no–builtin-variables”参数来取消你所
定义的变量对隐含规则的作用。


例如,第一条隐含规则——编译C程序的隐含规则的命令是“$(CC) –c $(CFLAGS)
$(CPPFLAGS)”。Make 默认的编译命令是“cc”,如果你把变量“$(CC)”重定义成
“gcc”,把变量“$(CFLAGS)”重定义成“-g”,那么,隐含规则中的命令全部会以
“gcc–c-g$(CPPFLAGS)”的样子来执行了。


我们可以把隐含规则中使用的变量分成两种:一种是命令相关的,如“CC”;一种是
参数相的关,如“CFLAGS”。下面是所有隐含规则中会用到的变量:


1、关于命令的变量。


AR
函数库打包程序。默认命令是“ar”。
AS
汇编语言编译程序。默认命令是“as”。
CC
C 语言编译程序。默认命令是“cc”。
CXX
C++语言编译程序。默认命令是“g++”。
CO
从RCS文件中扩展文件程序。默认命令是“co”。
CPP
C 程序的预处理器(输出是标准输出设备)。默认命令是“$(CC) –E”。
FC
Fortran 和 Ratfor 的编译器和预处理程序。默认命令是“f77”。
GET
从SCCS文件中扩展文件的程序。默认命令是“get”。
LEX
Lex 方法分析器程序(针对于 C 或 Ratfor)。默认命令是“lex”。
PC
Pascal 语言编译程序。默认命令是“pc”。
YACC
Yacc 文法分析器(针对于 C 程序)。默认命令是“yacc”。
YACCR

Yacc 文法分析器(针对于 Ratfor 程序)。默认命令是“yacc –r”。
MAKEINFO
转换Texinfo源文件(.texi)到Info文件程序。默认命令是“makeinfo”。
TEX
从TeX源文件创建TeXDVI文件的程序。默认命令是“tex”。
TEXI2DVI
从Texinfo源文件创建军TeXDVI文件的程序。默认命令是“texi2dvi”。
WEAVE
转换Web到TeX的程序。默认命令是“weave”。
CWEAVE
转换CWeb到TeX的程序。默认命令是“cweave”。
TANGLE
转换Web到Pascal语言的程序。默认命令是“tangle”。
CTANGLE
转换CWeb到C。默认命令是“ctangle”。
RM
删除文件命令。默认命令是“rm–f”。


2、关于命令参数的变量


下面的这些变量都是相关上面的命令的参数。如果没有指明其默认值,那么其默认值都
是空。


ARFLAGS
函数库打包程序AR命令的参数。默认值是“rv”。
ASFLAGS
汇编语言编译器参数。(当明显地调用“.s”或“.S”文件时)。
CFLAGS
C 语言编译器参数。
CXXFLAGS
C++语言编译器参数。
COFLAGS
RCS 命令参数。
CPPFLAGS
C 预处理器参数。( C 和 Fortran 编译器也会用到)。
FFLAGS
Fortran 语言编译器参数。
GFLAGS
SCCS “get”程序参数。
LDFLAGS
链接器参数。(如:“ld”)
LFLAGS
Lex 文法分析器参数。
PFLAGS

Pascal 语言编译器参数。
RFLAGS
Ratfor 程序的 Fortran 编译器参数。
YFLAGS
Yacc 文法分析器参数。

 

四、隐含规则链


有些时候,一个目标可能被一系列的隐含规则所作用。例如,一个[.o]的文件生成,可
能会是先被Yacc的[.y]文件先成[.c],然后再被C的编译器生成。我们把这一系列的隐
含规则叫做“隐含规则链”。


在上面的例子中,如果文件[.c]存在,那么就直接调用C的编译器的隐含规则,如果没
有[.c]文件,但有一个[.y]文件,那么Yacc的隐含规则会被调用,生成[.c]文件,然后,
再调用C编译的隐含规则最终由[.c]生成[.o]文件,达到目标。


我们把这种[.c]的文件(或是目标),叫做中间目标。不管怎么样,make会努力自动推
导生成目标的一切方法,不管中间目标有多少,其都会执着地把所有的隐含规则和你
书写的规则全部合起来分析,努力达到目标,所以,有些时候,可能会让你觉得奇怪,
怎么我的目标会这样生成?怎么我的makefile发疯了?


在默认情况下,对于中间目标,它和一般的目标有两个地方所不同:第一个不同是除
非中间的目标不存在,才会引发中间规则。第二个不同的是,只要目标成功产生,那么,
产生最终目标过程中,所产生的中间目标文件会被以“rm-f”删除。


通常,一个被makefile指定成目标或是依赖目标的文件不能被当作中介。然而,你可以
明显地说明一个文件或是目标是中介目标,你可以使用伪目标“.INTERMEDIATE”来
强制声明。(如:.INTERMEDIATE:mid)


你也可以阻止 make 自动删除中间目标,要做到这一点,你可以使用伪目标
“.SECONDARY”来强制声明(如:.SECONDARY:sec)。你还可以把你的目标,以模
式的方式来指定(如:%.o)成伪目标“.PRECIOUS”的依赖目标,以保存被隐含规则
所生成的中间文件。


在“隐含规则链”中,禁止同一个目标出现两次或两次以上,这样一来,就可防止在
make 自动推导时出现无限递归的情况。


Make 会优化一些特殊的隐含规则,而不生成中间文件。如,从文件“foo.c”生成目标程
序“foo”,按道理,make会编译生成中间文件“foo.o”,然后链接成“foo”,但在实际
情况下,这一动作可以被一条“cc”的命令完成(cc–ofoofoo.c),于是优化过的规则
就不会生成中间文件。

五、定义模式规则


你可以使用模式规则来定义一个隐含规则。一个模式规则就好像一个一般的规则,只是
在规则中,目标的定义需要有"%"字符。"%"的意思是表示一个或多个任意字符。在依赖
目标中同样可以使用"%",只是依赖目标中的"%"的取值,取决于其目标。


有一点需要注意的是,"%"的展开发生在变量和函数的展开之后,变量和函数的展开
发生在make载入Makefile时,而模式规则中的"%"则发生在运行时。

 

1、模式规则介绍


模式规则中,至少在规则的目标定义中要包含"%",否则,就是一般的规则。目标中
的"%"定义表示对文件名的匹配,"%"表示长度任意的非空字符串。例如:"%.c"表示以".
c"结尾的文件名(文件名的长度至少为 3),而"s.%.c"则表示以"s."开头,".c"结尾的文
件名(文件名的长度至少为5)。


如果"%"定义在目标中,那么,目标中的"%"的值决定了依赖目标中的"%"的值,也就
是说,目标中的模式的"%"决定了依赖目标中"%"的样子。例如有一个模式规则如下:


%.o : %.c ; <command ......>


其含义是,指出了怎么从所有的[.c]文件生成相应的[.o]文件的规则。如果要生成的目标
是"a.ob.o",那么"%c"就是"a.cb.c"。


一旦依赖目标中的"%"模式被确定,那么,make会被要求去匹配当前目录下所有的文
件名,一旦找到,make就会规则下的命令,所以,在模式规则中,目标可能会是多个
的,如果有模式匹配出多个目标,make就会产生所有的模式目标,此时,make关心
的是依赖的文件名和生成目标的命令这两件事。

 

2、模式规则示例


下面这个例子表示了把所有的[.c]文件都编译成[.o]文件.
                   ,


%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@


其中,"$@"表示所有的目标的挨个值,"$<"表示了所有依赖目标的挨个值。这些奇怪
的变量我们叫"自动化变量",后面会详细讲述。

下面的这个例子中有两个目标是模式的:


%.tab.c %.tab.h: %.y
bison -d $<


这 条规 则告诉 make 把所有 的[.y]文件都 以 "bison -d <n>.y"执行, 然后 生
成"<n>.tab.c"和"<n>.tab.h"文件。(其中,"<n>"表示一个任意字符串)。如果我们的执
行程序"foo"依赖于文件"parse.tab.o"和"scan.o",并且文件"scan.o"依赖于文
件"parse.tab.h",如果"parse.y"文件被更新了,那么根据上述的规则,"bison -d
parse.y"就会被执行一次,于是,"parse.tab.o"和"scan.o"的依赖文件就齐了。(假
设 , "parse.tab.o" 由 "parse.tab.c" 生 成 , 和 "scan.o" 由 "scan.c" 生 成 ,
而"foo"由"parse.tab.o"和"scan.o"链接生成,而且foo和其[.o]文件的依赖关系也写好,
那么,所有的目标都会得到满足)


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理