基因芯片[资料整理]

基因芯片
 1什么是基因芯片
    生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交的芯片。

基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8 nt亚序列:
  (1)     CTCATATG
  (2)     GCTCATAT
  (3)    AGCTCATA
  (4)    TAGCTCAT
  (5)   TTAGCTCA
  这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中A、T、C、G 4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8 nt亚序列探针中,仅有上述5个能同靶DNA杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸,从而推出靶DNA中的所有8 nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶DNA 的互补寡核苷酸序列。

 基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以用下图来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。据此可重组出靶核酸的序列。

基因芯片的测序原理图

基因芯片又称为DNA微阵列(DNA microarray),可分为三种主要类型:1)固定在聚合物基片(尼龙膜,硝酸纤维膜等)表面上的核酸探针或cDNA片段,通常用同位素标记的靶基因与其杂交,通过放射显影技术进行检测。这种方法的优点是所需检测设备与目前分子生物学所用的放射显影技术相一致,相对比较成熟。但芯片上探针密度不高,样品和试剂的需求量大,定量检测存在较多问题。2)用点样法固定在玻璃板上的DNA探针阵列,通过与荧光标记的靶基因杂交进行检测。这种方法点阵密度可有较大的提高,各个探针在表面上的结合量也比较一致,但在标准化和批量化生产方面仍有不易克服的困难。3)在玻璃等硬质表面上直接合成的寡核苷酸探针阵列,与荧光标记的靶基因杂交进行检测。该方法把微电子光刻技术与DNA化学合成技术相结合,可以使基因芯片的探针密度大大提高,减少试剂的用量,实现标准化和批量化大规模生产,有着十分重要的发展潜力。

图11-5-2 基因芯片原型

它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。基因芯片通过应用平面微细加工技术和超分子自组装技术,把大量分子检测单元集成在一个微小的固体基片表面,可同时对大量的核酸和蛋白质等生物分子实现高效、快速、低成本的检测和分析。

由于尚未形成主流技术,生物芯片的形式非常多,以基质材料分,有尼龙膜、玻璃片、塑料、硅胶晶片、微型磁珠等;以所检测的生物信号种类分,有核酸、蛋白质、生物组织碎片甚至完整的活细胞;按工作原理分类,有杂交型、合成型、连接型、亲和识别型等。由于生物芯片概念是随着人类基因组的发展一起建立起来的,所以至今为止生物信号平行分析最成功的形式是以一种尼龙膜为基质的“cDNA阵列”,用于检测生物样品中基因表达谱的改变。

2.基因芯片技术基本过程

    生物芯片是将生命科学研究中所涉及的不连续的分析过程(如样品制备、化学反应和分析检测),利用微电子、微机械、化学、物理技术、计算机技术在固体芯片表面构建的微流体分析单元和系统,使之连续化、集成化、微型化。

生物芯片技术主要包括四个基本要点:芯片方阵的构建、样品的制备、生物分子反应和信号的检测。1、芯片制备,先将玻璃片或硅片进行表面处理,然后使DNA片段或蛋白质分子按顺序排列在片芯上。2、样品制备,生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应。可将样品进行生物处理,获取其中的蛋白质或DNA、RNA,并且加以标记,以提高检测的灵敏度。3、生物分子反应,芯片上的生物分子之间的反应是芯片检测的关键一步。通过选择合适的反应条件使生物分子间反应处于最佳状况中,减少生物分子之间的错配比率。4、芯片信号检测,常用的芯片信号检测方法是将芯片置入芯片扫描仪中,通过扫描以获得有关生物信息。

1 DNA方阵的构建

  选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;(2)或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。

    基因芯片的制备主要有两种基本方法,一是在片合成法,另一种方法是点样法。在片合成法是基于组合化学的合成原理,它通过一组定位模板来决定基片表面上不同化学单体的偶联位点和次序。在片合成法制备DNA芯片的关键是高空间分辨率的模板定位技术和固相合成化学技术的精巧结合。目前,已有多种模板技术用于基因芯片的在片合成,如光去保护并行合成法、光刻胶保护合成法、微流体模板固相合成技术、分子印章多次压印原位合成的方法、喷印合成法。在片合成法可以发挥微细加工技术的优势,很适合制作大规模DNA探针阵列芯片,实现高密度芯片的标准化和规模化生产。美国Affymetrix公司制备的基因芯片产品在1.28*1.28cm2表面上可包含300,000个20至25mer寡核苷酸探针,每个探针单元的大小为10um X 10um。其实验室芯片的阵列数已超过到1,000,000个探针。 

图11-5-3 基因芯片在片合成原理图

基因芯片点样法首先按常规方法制备cDNA(或寡核苷酸)探针库,然后通过特殊的针头和微喷头, 分别把不同的探针溶液,逐点分配在玻璃、尼龙或者其它固相基底表面上不同位点,并通过物理和化学的结合使探针被固定于芯片的相应位点。这种方式较灵活,探针片段可来自多个途径,除了可使用寡聚核苷酸探针,也可使用较长的基因片段以及核酸类似物探针(如PNA等)。探针制备方法可以用常规DNA探针合成方法、或PCR扩增的cDNA、EST文库等。固定的方式也多种多样。点样法的优越性在于可以充分利用原有的合成寡核苷酸的方法和仪器或cDNA探针库,探针的长度可以任意选择,且固定方法也比较成熟,灵活性大适合于研究单位根据需要自行制备科研型基因芯片,制作点阵规模较小的商品基因芯片。 

2 样品DNA或mRNA的准备。

  从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。

  在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。

    与普通分子生物学实验一样,靶基因的制备需要运用常规手段从细胞和组织中提取模板分子,进行模板的扩增和标记。基因芯片包括大量探针分子,因此,靶基因样品的制备方法将根据基因芯片的类型和所研究的对象(如mRNA 、DNA等)而决定。对于大多数基因来说,mRNA 的表达水平大致与其蛋白质的水平相对应,因此,对细胞内mRNA 表达水平进行定量检测对于了解细胞的性质与状态十分重要。用基因芯片可以对细胞内大量基因的mRNA表达差异进行检测,其靶基因的制备一般采用RT-PCR方法以寡聚dT作引物进行扩增。

待测样品的标记,主要采用荧光分子。常规标记的过程是通过在扩增过程中加入含有荧光标记的dNTP(至少一种为荧光标记的),荧光标记的单核苷酸分子,在转录和复制过程中,被引入新合成的DNA片段。后者变性后,即可与基因芯片上的微探针阵列进行分子杂交。也可采用末端标记法,直接在引物上标记荧光。即在引物合成时通过应用荧光标记的dNTP制备荧光标记引物,或通过标记生物素,进行荧光标记。

对于阵列密度较小的基因芯片(经常用膜片作为基底)可以用同位素检测法,采用32P标记技术,这样可以运用现在普通使用的同位素显影技术和仪器。但是,在使用同位素靶基因标记法过程中,一些表达量高杂交信号强的点阵,容易在其周围产生光晕,当其周围点阵的杂交信号较弱时,其杂交信号容易受到强杂交信号的掩盖。

3 分子杂交

    cDNA基因芯片与靶基因的杂交过程与一般常规的分子杂交过程基本相同。在基因芯片的杂交检测中,为了更好的比较不同来源样品的基因表达差异,或者为了提高基因芯片检测的准确性和测量范围,通常使用多色荧光技术。即把不同来源的靶基因用不同激发波长的的荧光探针来修饰,并同时使它们与基因芯片杂交。通过比较芯片上不同波长荧光的分布图,可以直接获得不同样品中基因表达的差异。

人们还发展了其它灵敏度高、特异性好的基因芯片杂交检测方法。例如短序列偶联法。该方法首先将非标记的DNA靶序列与基因芯片上探针阵列进行完全杂交,若基因芯片上探针的固定端是5’端时,继续以靶基因为模板,可以在暴露于溶液中的3’-OH上用DNA聚合酶合成上新的带有荧光标记的碱基(ddNTPs)。通过检测ddNTP可以分辨出靶序列的基因。 

美国Nanogen公司提出了一种通过交变电场加速基因芯片的杂交速度的主动式基因芯片。他们利用核酸分子所带的负电性质,通过快速反转电场的极性,使靶基因与探针间产生快速结合和分离。通过控制电场的大小,使得完全匹配杂交的核酸分子保留在阵列表面,而非特异性结合的DNA在电场的作用下与探针分离。这种芯片的分子杂交速度可缩短至1分钟以下甚至数秒(cheng et al,1998),因此有较广阔的应用前景。

    样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟(6)。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。

4 杂交图谱的检测和分析

  用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏`、快速,有取代荧光法的趋势。

5.生物信息学与基因芯片

    生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播、分析和解释等各方面的一门学科,它通过综合利用生物学、计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。基因组信息学、蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学的应用与发展包括三个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。
    基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。
1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。   
2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。
3、实验数据管理与分析。 对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系

图 基因芯片设计及信息处理

3.基因芯片的制造和种类

基因芯片的制造技术主要有原位合成技术和点样技术。目前流行的基因芯片大致可分为以下四类:
(一).光引导原位合成DNA微阵列
    光引导聚合技术是原位合成的主要技术,照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。
光引导聚合技术是Affymetrix公司开发的专利技术,其光引导聚合技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。并且其不仅可以用于寡聚核苷酸的合成,也可用于合成寡肽分子。因此,Affymetrix公司也就成了基因芯片领域的“INTEL”。
      Affymetrix公司是第一家有商品化诊断芯片上市的公司,目前该公司上市 的基因芯片按用途可分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产三种商品化诊断芯片,分别为p53基因突变诊断芯片、艾滋病病毒基因基因突变诊断芯片和细胞色素P450基因突变诊断芯片。

(二).微电子芯片
    微电子芯片的多位点电控阵列并含独立可寻址检测区域的微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。无论在芯片制造或成品芯片检测,均可通过相似微电极的电场变化来使核酸结合,引入"电子严谨度"参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。这种微电子基因芯片具有以下优点:
      1.电场定位过程能选择性地转运带电荷DNA分子,通过每个微电极位点的电场正负、强弱变化,能准确有效地随意调控芯片表面的核酸,既可将核酸结合在微电极位点上,也可以使核酸转运出来。
      2.通过电场变化能加快DNA杂交速率,通过导入正电场后,可以大大加快待测核酸同已知探针的结合速率,减少了杂交反应时间,同普通的"被动"杂交反应的几小时相比,这种"主动"杂交反应仅仅几秒钟就可完成。另外电场变化又可有效地去除未结合游离分子,减少未结合荧光信号干扰。
    3.通过电子严谨度可有效地控制杂交过程中的错配度,杂交错配的程度,对不同的要求上要给以不同的电场就可以符合不同的电子严谨度,这对核酸杂交严格度可以非常灵活地控制,这可以非常准确地进行SNP检测。
(三).微量点样DNA微阵列
    微量点样技术是目前大部分基因芯片公司使用的流行方法。就是指将许多特定的寡核苷酸片段或基因片段有规律地排列固定于支持物(如膜、硅片、陶瓷片及玻片)上,然后通过类似于Northern,Southern的方法与待测的标记样品按碱基配对原理进行杂交,再通过检测系统对其进行扫描,并用相应软件对信号进行比较和检测,得到所需的大量信息,进行基因的高通量、大规模、平行化、集约化的信息处理和功能研究。其主要优点是简便宜行,技术要求较低,并且探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。目前国内生产研究中具有相当的市场。
    其实微量点样DNA微阵列的制造和ELISA板的制造有相当的雷同,只是其包被的物不同,每一个小的点都相当于一个包被孔。因此,我们知道的一些ELISA包被问题,对微量点样DNA微阵列的点样也是同样的。
    对于ELISA来说,寻找合适的载体是重要的,同样微量点样DNA微阵列也是如此。比较各种载体的优缺点,表面经过化学处理的玻片用得最多,主要是它具有其他载体所不能比拟的优点:DNA样品可共价结合在玻片表面;玻片是一种持久的载体,它可耐受高温和高离子强度;玻片具有不可浸润性,使杂交体积降低到最小,因此提高了退火时的动力学参数;玻片的荧光信号本底低,不会造成很强的背景干扰;玻璃芯片可使用双荧光甚至多荧光杂交系统,可在一个反应中同时对两个以上的样本进行平行处理。因此以玻璃为载体的芯片更具有发展和应用的前景。
    当然,点样是整个流程中最重要的,微量点样DNA微阵列的点样是依靠点样仪来完成的,各种点样仪点样原理和优点各有不同,生产这种设备的公司有很多,象美国的Genomicsolutions公司、英国的BioRobotics公司、美国的Cartesian公司和加拿大的Engineering公司等。
    对于微量点样技术生产的基因芯片来说从仪器组成上可以分为点样仪器、杂交装置、检测仪器和分析仪器,点样仪器是否先进决定芯片上的探针密度和结合牢固程度,虽然芯片的探针密度是一个很重要的指标,达到极高密度的探针阵列是许多芯片生产公司梦寐以求的目标,但是具体的点样密度根据使用者的目的来决定,而且还要考虑到随后的杂交和检测过程。衡量点样装置有几个比较重要的指标,如仪器整体设计、功能多样性、芯片基质多样性、点样稳定性、点样速度、点样密度等等。
    点阵器一般采用实心或空心点样针,点样方式有非接触喷点(inkjet printing)和接触点样(Contact printing)两种方式。目前,有两种非接触喷点技术用于DNA点样,一种是用压电晶体将液体从孔中喷出的压电技术(piezoelectric technology),喷滴大小一般为50-500pl;另一种为注射器螺线管技术(syringe-solenoid technology),这种技术是通过高分辨率注射器泵和微螺线管阀门有机结合起来精确控制滴液的。

(四).其他
    除了,以上三种常用技术以外,还用美国NIH、Caliper公司和Orchidbio公司等的技术也有所不同。Orchidbio公司研制了一种毛细管微流泵芯片,在边长2英寸的芯片上集成了144个微室,分别由流入孔、反应室、循环管和废液流出孔组成,这种芯片不但可以用于基因诊断和分析,还可用于合成化学,就象一个微小的自动生化分析仪,呵呵。利用芯片的微指结构,Caliper公司的芯片可以用作细胞分选器,能够利用血细胞体积和变形性等特点可以很容易地把红细胞和白细胞分开.NIH研制微型芯片反应器可以很快地完成一系列生化反应。

4.基因芯片检测原理

杂交信号的检测是DNA芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、化学发光、荧光各向异性等等,但并非每种方法都适用于DNA芯片。由于DNA芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模DNA芯片由于其面积小,密度大,点样量很少,所以杂交信号较弱,需要使用光电倍增管或冷却的电荷偶连照相机(charged-coupled device camera,CCD)摄像机等弱光信号探测装置。此外,大多数DNA芯片杂交信号谱型除了分布位点以外还需要确定每一点上的信号强度,以确定是完全杂交还是不完全杂交,因而探测方法的灵敏度及线性响应也是非常重要的。杂交信号探测系统主要包括杂交信号产生、信号收集及传输和信号处理及成像三个部分组成。

由于所使用的标记物不同,因而相应的探测方法也各具特色。大多数研究者使用荧光标记物,也有一些研究者使用生物素标记,联合抗生物素结合物检测DNA化学发光。通过检测标记信号来确定DNA芯片杂交谱型。
    1.荧光标记杂交信号的检测方法
    使用荧光标记物的研究者最多,因而相应的探测方法也就最多、最成熟。由于荧光显微镜可以选择性地激发和探测样品中的混合荧光标记物,并具有很好的空间分辨率和热分辨率,特别是当荧光显微镜中使用了共焦激光扫描时,分辨能力在实际应用中可接近由数值孔径和光波长决定的空间分辨率,而在传统的显微镜是很难做到的,这便为DNA芯片进一步微型化提供了重要的检测方法的基础。大多数方法都是在人射照明式荧光显微镜(epifluoescence microscope)基础上发展起来的,包括激光扫描荧光显微镜、激光共焦扫描显微镜、使用了CCD相机的改进的荧光显微镜以及将DNA芯片直接制作在光纤维束切面上并结合荧光显微镜的光纤传感器微阵列。这些方法基本上都是将待杂交对象 以荧光物质标记,如荧光素或丽丝胶(lissamine)等,杂交后经过SSC和SDS的混合溶液或SSPE等缓冲液清洗。
    (1)激光扫描荧光显微镜
    探测装置比较典型。方法是将杂交后的芯片经处理后固定在计算机控制的二维传动平台上,并将一物镜置于其上方,由氩离子激光器产生激发光经滤波后通过物镜聚焦到芯片表面,激发荧光标记物产生荧光,光斑半径约为5-10μm。同时通过同一物镜收集荧光信号经另一滤波片滤波后,由冷却的光电倍增管探测,经模数转换板转换为数字信号。通过计算机控制传动平台X-Y方向上步进平移,DNA芯片被逐点照射,所采集荧光信号构成杂交信号谱型,送计算机分析处理,最后形成20μm象素的图像。这种方法分辨率高、图像质量较好,适用于各种主要类型的DNA芯片及大规模DNA芯片杂交信号检测,广泛应用于基因表达、基因诊断等方面研究。
    (2)激光扫描共焦显微镜
    激光扫描共焦显微镜与激光扫描荧光显微镜结构非常相似,但是由于采用了共焦技术因而更具优越性。这种方法可以在荧光标记分子与DNA芯片杂交的同时进行杂交信号的探测,而无须清洗掉未杂交分子,从而简化了操作步骤大大提高了工作效率。Affymetrix公司的S.P.A.Forder等人设计的DNA芯片即利用此方法。其方法是将靶 DNA分子溶液放在样品地中,芯片上合成寡核苷酸阵列的一面向下,与样品池溶液直接接触,并与DNA样品杂交。当用激发光照射使荧光标记物产生荧光时,既有芯片上杂交的DNA样品所发出的荧光,也有样品地中DNA所发出的荧光,如何将两者分离开来是一个非常重要的问题。而共焦显微镜具有非常好的纵向分辨率,可以在接受芯片表面荧光信号的同时,避开样品池中荧光信号的影响。一般采用氩离子激光器(488nm)作为激发光源,经物镜聚焦,从芯片背面入射,聚集于芯片与靶分子溶液接触面。杂交分子所发的荧光再经同一物镜收集,并经滤波片滤波,被冷却的光电倍增管在光子计数的模式下接收。经模数转换反转换为数字信号送微机处理,成像分析。在光电信增管前放置一共焦小孔,用于阻挡大部分激发光焦平面以外的来自样品池的未杂交分子荧光信号,避免其对探测结果的影响。激光器前也放置一个小孔光阑以尽量缩小聚焦点处光斑半径,使之能够只照射在单个探针上。通过计算机控制激光束或样品池的移动,便可实现对芯片的二维扫描,移动步长与芯片上寡核苷酸的间距匹配,在几分钟至几十分钟内即可获得荧光标记杂交信号图谱。其特点是灵敏度和分辨率较高,扫描时间长,比较适合研究用。现在 Affymetrix公司已推出商业化样机,整套系统约 12万美元。
    (3)采用了CCD相机的荧光显微镜
    这种探测装置与以上的扫描方法都是基于荧光显微镜,但是以CCD相机作为信号接收器而不是光电倍增管,因而无须扫描传动平台。由于不是逐点激发探测,因而激发光照射光场为整个芯片区域,由CCD相机获得整个DNA芯片的杂交谱型。这种方法一般不采用激光器作为激发光源,由于激光束光强的高斯分布,会使得光场光强度分布不均,而荧光信号的强度与激发光的强度密切相关,因而不利于信号采集的线性响应。为保证激发光匀场照射,有的学者使用高压汞灯经滤波片滤波,通过传统的光学物镜将激发光投射到芯片上,照明面积可通过更换物镜来调整;也有的研究者使用大功率弧形探照灯作为光源,使用光纤维束与透镜结合传输激发光,并与芯片表面呈50o角入射。由于采用了CCD相机,因而大大提高了获取荧光图像的速度,曝光时间可缩短至零点几秒至十几秒。其特点是扫描时间短,灵敏度和分辨率较低,比较适合临床诊断用[14].
    (4)光纤传感器
    有的研究者将 DNA芯片直接做在光纤维束的切面上(远端),光纤维束的另一端(近端)经特制的耦合装置耦合到荧光显微镜中。光纤维束由7根单模光纤组成。每根光纤的直径为200μm,两端均经化学方法抛光清洁。化学方法合成的寡核苷酸探针共价结合于每根光纤的远端组成寡核苷酸阵列。将光纤远端浸入到荧光标记的靶分子溶液中与靶分子杂交,通过光纤维束传导来自荧光显微镜的激光(490urn),激发荧光标记物产生荧光,仍用光纤维束传导荧光信号返回到荧光显微镜,由CCD相机接收。每根光纤单独作用互不干扰,而溶液中的荧光信号基本不会传播到光纤中,杂交到光纤远端的靶分子可在90%的甲酸胺( formamide)和TE缓冲液中浸泡10秒钟去除,进而反复使用。这种方法快速、便捷,可实时检测DNA微阵列杂交情况而且具有较高的灵敏度,但由于光纤维束所含光纤数目有限,因而不便于制备大规模DNA芯片,有一定的应用局限性。

2..生物素标记方法中的杂交信号探测
    
以生物素(biotin)标记样品的方法由来已久,通常都要联合使用其它大分子与抗生物素的结合物(如结合化学发光底物酶、荧光素等),再利用所结合大分子的特殊性质得到最初的杂交信号,由于所选用的与抗生物素结合的分子种类繁多,因而检测方法也更趋多样化。特别是如果采用尼龙膜作为固相支持物,直接以荧光标记的探针用于DNA芯片杂交将受到很大的限制,因为在尼龙膜上荧光标记信号信噪比较低。因而使用尼龙膜作为固相支持物的这些研究者大多是采用生物素标记的。

几乎所有的检测技术都可以用于基因芯片的检测,比如常用的放射标记技术,荧光标记技术,质谱分析,化学发光等等都行。但是如果检测仪器的分辨率不高,那么即使点样仪器制造出了很高密度的芯片也没有用,检测仪器的分辨率是基因芯片的重要瓶颈。在基因芯片的显色和测定方法中又以荧光标记技术最为常用。一般膜芯片的杂交都用同位素p32、p33作标记,其信号的检测需通过传统的磷光成像系统来完成,
    使用荧光标记的基因芯片,其检测需要专用的荧光扫描仪测定。对于高密度的基因芯片目前最常用的是激光共聚焦显微镜和高性能的冷却CCD,二者各有利弊,须根据要求综合衡量。其中又以高性能的冷却CCD最为常用。

  目前专用于荧光扫描的扫描仪大致分为两类:一类是基于CCD(charge-coupled devices,电荷偶合装置)的方法检测光子;另一类则是基于PMT(photomultiplier tube,光电倍增管)的检测系统。首先比较一下这两种设备各自的优缺点:
  CCD一次可成像很大面积的区域,而以PMT为基础的荧光扫描仪则是以单束固定波长的激光来扫描,因此或者需要激光头,或者需要目的芯片的机械运动来使激光扫到整个面积,这样就需要耗费较多的时间来扫描;但是CCD有其缺点:目前性能最优越的CCD数字相机的成像面积只有16×12mm(像素为10μm),因此要达到整个芯片的面积20×60mm的话,需要数个数码相机同时工作,或者也可以以降低分辨率为代价来获得扫描精度不是很高的图像。  生产商业化扫描仪的公司包括:Genomic Solutions公司、Packard公司、GSI公司、Beecher Instruments公司、Molecular Dynamics、Genetic Microsystems公司、Axon Instruments公司等。
5.基因芯片的应用 

(一)基因表达分析 基因芯片具有高度的敏感性和特异性,它可以监测细胞中几个至几千个mRNA拷贝的转录情况。与用单探针分析mRNA的点杂交技术不同,基因芯片表达探针阵列应用了大约20对寡核苷酸探针来监测每一个mRNA的转录情况。每对探针中,包含一个与所要监测的mRNA完全吻合和一个不完全吻合的探针(图2),这两个探针的差别在于其中间位置的核苷酸不同。这种成对的探针可以将非特异性杂交和背景讯号减小到最低的水平,由此我们就可以确定那些低强度的mRNA。目前,Affymetrix公司已经生产出HugeneFL、Mu6500(含有小鼠6 500个基因)、Ye6100(含有酵母6 100个基因)等基因芯片成品。

  1 分析基因表达时空特征。英国剑桥大学Whitehead研究所的Frank C.P. Holstege等人,应用含有酵母基因组的基因芯片,深入研究了真核细胞基因组的调节周期。应用基因组水平的表达分析,监测那些表达受转录起始机制的关键成分控制的基因,发现RNA聚合酶II、主要的转录因子TFIID和SAGA染色体修饰复合物等均在基因的表达中有自己特定的作用位点[15]。通过本试验,研究人员揭示了:(1)基因特异性的转录因子对表达的调控作用。(2)细胞在缺乏营养的环境中,基因不同位点的协同调节作用的全新机制。(3)信号转导通路的最终作用位点,在最初的几步中就可以确定。以此试验为基础,研究人员进一步绘制出了酵母基因组控制图,并由此分析出了各种调节因子在基因上不同的作用位点和其作用的分子机制。
  美国Stanford大学的V.R.Iyer等人[16],对成纤维细胞中与细胞增生和损伤修复有关的基因进行了分析。首先,他们用成纤维细胞中的8 600个基因片断制成基因芯片的探针阵列,通过与mRNA反转录形成的cDNA的杂交反应,可以判断出该基因的活性。在试验中,成纤维细胞被置于无营养的环境中,使绝大部分基因的活性关闭,两天后,加入10%的血清,24小时内,分6个不同的时间点,观察基因的活化情况。试验结果表明,在所有被监测的基因中,约有500个基因最为活跃,而使细胞保持不分裂状态的基因活性被抑制。其中,最早被活化的是那些转录调控基因。在活化的基因中,有28个基因共同作用,控制细胞的增殖;8个与免疫反应的激活有关;19个与血管重建有关;另有许多基因,与血管新生密切相关。在肿瘤细胞中,基因的表达与正常的细胞存在着明显的差异。通过基因芯片绘出基因表达的时空图谱,有助于人类认识生命活动过程和特征。

2 基因差异表达检测〔17〕 生命活动中基因表达的改变是生物学研究的核心问题。理解人类基因组中10万个不同的基因功能,监测某些组织、细胞不同分化阶段的差异基因表达(differential gene expression ,DGE)十分重要。对差异表达的研究,可以推断基因与基因的相互关系,细胞分化中基因“开启”或“关闭”的机制;揭示基因与疾病的发生、发展、转归的内在联系。目前DGE研究方法主要有表达序列标签(ESTs)测序、差减克隆(subtractive cloning )、差异显示(differential display)、基因表达系列分析 (serial analysis of gene expression, SAGE)。而cDNA微阵列杂交技术可监测大量mRNA的转录,直接快速地检测出极其微量的mRNA,且易于同时监测成千上万的基因,是研究基因功能的重要手段之一。Rihn BH等利用基因芯片检测胸膜间皮瘤与正常细胞间比较了6500个基因,,发现了300多个差异基因的表达。其中几个典型基因的表达经RT-PCR进行定量后,可作为胸膜间皮瘤诊断的标记物(Markers)[18]。Sgroi〔19〕报告DNA芯片结合激光捕获显微切割技术(laser capture microdissection)用于乳癌浸润期和转移期及正常细胞的基因表达谱(gene expression profiles)差异研究,结果被定量PCR和免疫组化所证实。差异表达有助于早期发现瘤细胞3万个基因与正常细胞的区别,有助于了解瘤细胞的发生、浸润、转移和药敏。最近,美国毒物化学研究所(CIIT) 和国家环境健康科学研究所(NIEHS)正计划在一张玻片上建立8 700个小白鼠cDNA芯片,用于肝癌的研究。我国也已成功研制出能检出41 000种基因表达谱的芯片。美国Stanford大学的David Botstein利用cDNA微阵列芯片,对乳腺癌细胞的基因表达进行了分析,发现其基因表达水平明显低于正常细胞。利用基因芯片对表达进行分析,在一次试验中可以获取相当于在60余万次传统的Northern杂交中所获得的关于基因表达的信息。通过这种实验方法,可以建立一种全新的肿瘤分类学方法,即依据每个肿瘤细胞中的基因表达情况对肿瘤细胞进行分类。基因芯片技术在分析基因的表达中具有不可比拟的优势。
    3 发现新基因 Moch等利用肿瘤微阵列芯片(5 184个cDNA片段)发现了肾细胞癌的肿瘤标志物基因,并于正常细胞进行比较。在532份标本中检测到胞浆纤维Vimentin的表达基因,阳性率为51%~61%〔20〕。追踪观察,有Vimentin表达的患者,预后极差。人类大量ESTs给cDNA微阵列提供了丰富的资源,数据库中400 000个ESTs代表了所有人类基因,成千上万的ESTs微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析〔21〕。

定量检测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗靶等方面是很有价值的。如该技术在炎症性疾病类风湿性关节炎(RA)和炎症性肠病(IBD)的基因表达研究中,由RA或IBD组织制备探针,用Cy3和Cy5荧光素标记,然后与靶cDNA微阵列杂交,可检测出炎症疾病诱导的基因如TNF-α、IL或粒细胞集落刺激因子,同时发现一些以前未发现的基因如HME基因和黑色素瘤生长刺激因子。Schena等人[22]报道了cDNA的微阵列在人类基因表达监测、生物学功能研究和基因发现方面的应用。采用含1,046个已知序列的cDNA微阵列,用高速机器人喷印在玻片上,用双色杂交法定量监测不同基因表达,在一定的实验条件下,不同表达模式的阵列成分通过序列分析鉴定其特征。该方法较以往常用的方法敏感10倍以上,检测限度为1:500,000(wt/wt)总人体mRNA。在培养T细胞热休克反应的测定中,发现17个阵列成分的荧光比较明显改变,其中11个受热休克处理的诱导,6个呈现中度抑制,对相应于17个阵列成分的cDNA测序发现5个表达最高的成分是5种热休克蛋白,17个克隆中发现3个新序列。另外,在佛波酯诱导检测中[23],发现有6个阵列成分信号增强超过2倍,测序及数据库比较揭示有5个已知的,诱导表达最高的两个是PCA-1酪氨酸磷酸酶和核因子-κB1,有一个是未知的。这4个新基因的表达水平均相对较低,仅呈现2倍的诱导。Northern杂交结果证实了微阵列的结果。进一步检测了人的骨髓、脑、前列腺及心脏组织中热休克和佛波酯调节基因的表达,4种组织中检测出15种热休克和佛波酯调节基因的表达,其表达水平与Jurkat细胞中相应成分的表达水平密切相关如在四种组织中表达水平最高的两个基因β-actin和细胞色素C氧化酶在Jurkat细胞中的表达水平也很高。上述实验提示在缺乏任何序列信息的条件下,微阵列可用于基因发现和基因表达检测。目前,大量人类ESTs给cDNA微阵列提供了丰富的资源,数据库中400,000个ESTs代表了所有人类基因,成千上万的ESTs微阵列将为人类基因表达研究提供强有力的分析工具。这将大大地加速人类基因组的功能分析。
    4 大规模DNA测序 人类基因组计划的实施促进了高效的、自动化操作的测序方法的发展。芯片技术中杂交测序(sequencing by hybridization, SBH)技术及邻堆杂交(contiguous stacking hybridization, CSH)技术即是一种新的高效快速测序方法[24-26]。用含65 536个8聚寡核苷酸的微阵列,采用SBH技术,可测定200 bp长DNA序列,采用67 108 864个13聚寡核苷酸的微阵列,可对数千个碱基长的DNA测序。SBH技术的效率随着微阵列中寡核苷酸数量与长度的增加而提高,但微阵列中寡核苷酸数量与长度的增加则提高了微阵列的复杂性,降低了杂交准确性。CSH技术弥补了SBH技术存在的弊端,CSH技术的应用增加了微阵列中寡核苷酸的有效长度,加强了序列准确性,可进行较长的DNA测序。计算机模拟论证了8聚寡核苷酸微阵列与5聚寡核苷酸邻堆杂交,相当于13聚寡核苷酸微阵列的作用,可测定数千个核苷酸长的DNA序列[26]。Dubiley等人[26]将合成的10聚寡核苷酸固定于排列在载片表面的0.1×0.1×0.02mm或1×1×0.02mm聚丙酰胺凝胶垫上制备聚寡核苷酸微阵列,先用分离微阵列(fractionation chips)进行单链DNA分离,再用测序微阵列(sequencing chips)分析序列,后者联合采用了10聚寡核苷酸微阵列的酶促磷酸化、DNA杂交及与邻堆的5聚寡核苷酸连接等技术。该方法可用于含重复序列及较长序列的DNA序列测定及不同基因组同源区域的序列比较。利用基因芯片测序的准确率达99%以上。

正如NIH首脑Harold Varmus在美国细胞生物学1998年年会上所说:“在基因芯片的帮助下,我们将能够监测一个细胞乃至整个组织中所有基因的行为。”

(二)基因型、基因突变和多态性分析 

在同一物种不同种群和个体之间,有着多种不同的基因型,而这种不同,往往与个体的不同性状和多种遗传性疾病有着密切的关系。通过对大量具有不同性状的个体的基因型进行比较,就可以得出基因与性状的关系。但是,由于大多数性状和遗传性疾病是由多个基因同时决定的,因此分析起来就十分困难,然而基因芯片技术恰恰解决了这一问题,利用其可以同时反应数千甚至更多个基因的特性,我们就可以分析基因组中不同基因与性状或疾病的关系。美国Stanford大学的E.A.Winzeler等[27],以两种不同菌株的酵母(S96和YJM789)作为实验材料,对控制酵母对放线菌酮的抗药性的基因进行分析。将含有酵母150 000个DNA片断的基因芯片分别与这两株酵母活化转录的mRNA分子杂交,S96几乎全部吻合,而YJM789与芯片上的探针组存在较大的差异,约有3000个位点没有杂交显色。由于S96对放线菌酮有抗药性而YJM789的抗药性则弱的多,因此可以判定控制这一抗药性的基因的所在。而后,通过对S96和YJM789杂交后产生的抗药子代的遗传标记的分析,进一步确定,控制该抗药性的基因位于15号染色体,是一长约57 000个碱基的片断。美国国家人类基因组研究室的J.G.Hacia等在Fodor研究小组的协助下[28],将基因芯片应用于双色突变分析。他们的分析对象是与人类遗传性乳腺癌和卵巢癌密切相关的BRCA1基因的外显子11。在扩增后,将BRCA1基因的外显子11置于含有荧光素-12-UTP的环境中进行体外转录反应,而后将转录产生的mRNA与BRCA1外显子11芯片杂交,4小时后,用藻红蛋白染色。在观察时,用488nm的氩离子激光进行扫描,荧光染色位点呈现绿色,而藻红蛋白染色的位点呈现红色。应用双色分析,可以更为清楚的监测未知样品与标准链之间的竞争性杂交情况,进而分析该基因中的不同突变。通过对15名患者BRCA1基因的观察,有14名患者在外显子11位点存在不同的突变。Hacia等[29]在1.28 cm×1.28 cm的芯片上固定了9.66×104个长度为20 nt的寡核苷酸探针,用于检测乳腺癌基因BRCA1的exon11 (3.45 kb)中所有可能的碱基置换、插入和缺失(1~5 bp)突变。针对每一个位点,共有28个独立的探针,14个针对有义链,14个针对反义链。14个探针包括2个野生型,3个碱基置换、4个插入突变、5个碱基缺失。在15例患者样品中,发现有14例有基因突变,类型包括点突变、插入及缺失等;在20例对照样品中均未检出假阳性结果,结果表明DNA芯片技术可快速、准确地研究大量患者样品中特定基因所有可能的杂合变。Cronin等[30]分别用两种DNA芯片检测囊性纤维化跨膜传导调节(CFTR)的突变,其中一个芯片包含1 480个探针,检测了CFTR基因的第10和11外显子的已知突变,包括缺失、插入和单碱基置换,并分析了10个未知样品的CFTR基因,其结果与PCR-RELP的分析结果完全一致。

Guo等人[31]利用结合在玻璃支持物上的等位基因特异性寡核苷酸(ASOs)微阵列建立了简单快速的基因多态性分析方法。将ASOs共价固定于玻璃载片上,采用PCR扩增基因组DNA,其一条引物用荧光素标记,另一条引物用生物素标记,分离两条互补的DNA链,将荧光素标记DNA链与微阵列杂交,通过荧光扫描检测杂交模式,即可测定PCR产物存在的多种多态性,该方法对人的酪氨酸酶基因等4个外显子内含有的5个单碱基突变进行分析,结果显示单碱基错配与完全匹配的杂交模式非常易于区别。这种方法可快速、定量地获得基因信息。β-地中海贫血中变异的检测也论证了该方法的有效性和可信性[32]。Lipshutz等人[33]采用含18,495个寡核苷酸探针的微阵列,对HIV-1基因组反转录酶基因(rt)及蛋白酶基因(pro)的高度多态性进行了筛选。微阵列中内部探针与靶序列的错配具有明显的不稳定性,据此可快速区别核酸靶的差异。例如检测序列5'GTATCAGCATXGCCATCGTGC中X碱基的种类,可用下列4种探针3'AGTCGTAACGGTAGC,3'AGTCGTACCGGTAGC,3'AGTCGTAGCGGTAGC,3'AGTCGTATCGGTAGC。高密度探针阵列可检则具有特征性的较长序列相关的多态性与变异。筛选1,000个核苷酸序列的变异与多态性需要4,000个探针。用100μm合成位点,设计1.28cm2阵列,将有大约16,000个探针,能筛选4kb序列。HIV-1基因组中rt与pro在疾病过程中易于发生多种变异,这些变异将导致病毒对多种抗病毒药物包括AZT、ddI、ddC等出现明显抗性,因此检测和分析rt与pro的变异与多态性具有重要的临床意义。随着遗传病与癌症相关基因发现数量的增加,变异与多态性分析将越来越重要。Chee等[34]用含有1.35×105个长度为25 nt的寡核苷酸探针,分析了16.6 kb的人类线粒体基因组DNA(mt DNA),共分析了10个样本,检测出了505个多态性位点,并在Leber′s遗传性视神经疾病患者的mt DNA中检测出3个致病性突变位点。

随着人类基因组计划的逐步发展,研究人员分析出了越来越多的基因序列。下一步,就是要分析这些基因的多态性与生物功能和疾病的关系,而这需要对大量个体进行分析。通过基因芯片SNP(单核苷酸多态性)定位试验,可以确定基因多态性和疾病的关系,同时也可确定致病的机制和病人对治疗的反应等。同样,对于许多与人类疾病密切相关的致病微生物,也可对其进行基因型和多态性分析,1998年,法国T.Livache等[35]就成功的利用基因芯片技术,对人血中的HCV病毒进行了基因型分析。SNP基因芯片的成功将使临床诊断上到一个新的台阶。

(三)疾病的诊断与治疗 人类的疾病与遗传基因密切相关,基因芯片可以对遗传信息进行快速准确的分析,因此它在疾病的分子诊断中的优势是不言而喻的,就临床一种新的、强有力的分子工具[36]。基因芯片技术已经被应用于感染性疾病、肿瘤和药物代谢等方面的研究。
  1 遗传病相关基因的定位 90年代以来,随着人类基因组计划的发展,各种方法被相继创立并应用到基因定位中。我国有4 000万育龄妇女,每年有2 000万新生儿,准确检测遗传病基因是优生优育的技术保障。DNA芯片充分结合并灵活运用了大规模集成电路制造技术、自动化技术、计算机及网络技术、激光共聚焦扫描、DNA合成、荧光标记探针、分子杂交及分子生物学的其它技术,在这一领域的研究中有着巨大的潜力。这一技术已成为基因定位研究的高效工具。随着遗传病与癌症相关基因发现数量的增加,变异与多态性分析将越来越重要。HGP使许多遗传疾病基因得以定位,配合使用多位PCR (multiplex-PCR) /DNA芯片可一次筛查多种遗传病,既经济快速又敏感可靠[37,38]。
    2 肿瘤诊断 已用基因芯片检测人鼻咽癌、肺癌基因表达谱、肿瘤原癌基因和抑癌基因的发现和定位。早在1996年,M.J.Kozal等就利用基因芯片[39],对HIV-I B亚型中的蛋白酶基因的多态性进行了分析,这也是基因芯片技术被首次应用于临床实践。在艾滋病的治疗中,使用HIV蛋白酶抑制剂是一种重要的手段。然而,病毒对该药物的反应却有着很大的差异。利用基因芯片技术,研究人员分析了取自102个病人的167个病毒单体,发现这些同为美国HIV-I B亚种的病毒的基因序列存在极大差异,其中蛋白酶的基因片断差异最大,在编码99个氨基酸的序列中,竟有47.5%存在明显突变。这些氨基酸的突变,直接导致了病毒抗药性的不同。含96 600个20体寡核苷酸高密度阵列对遗传性乳腺和卵巢癌BRCA1基因3.45 kb的第11个外显子进行杂合变异筛选,15个患者的已知变异的样品中,准确诊断出14个患者,20个对照样品中未发现假阳性。用Affimetrix p53芯片和PCR-SSCP调查42例有乳癌史的家系,p53基因13 964位的G变为C,突变率为7.1%;无乳癌家族史者为0。Favis等用多位PCR/连接酶检测反应(PCR/LDR)在一个试管内同时检测数百个基因突变,用于检测大肠癌组织k-ras 和p53突变及BRCA-1和BRCA-2低频率突变收到良好效果。
    人类恶性肿瘤中,约有60%与人类p53抑癌基因的突变有关,目前研究人员已经研制成功了可以检测p53基因所有编码区(外显子2~外显子11)错意突变和单碱基缺失突变的基因芯片。以外显子7的第248个密码子为例,野生型为CGG,在芯片上做出5条探针,相应位点分别为GAC、GCC、GGC、GTC和G-C,根据杂交后的荧光显色图,就可以分析出该位点为何种突变。

3 感染性疾病的诊断 HIV-1基因组中rt与pro在疾病过程中易于发生多种变异,这些变异将导致病毒对多种抗病毒药物包括AZT、ddI、ddC等出现明显抗性,因此检测和分析rt与pro的变异与多态性具有重要的临床意义。Hayward[40]以3 648个插入片段建立猎枪微阵列(shotgun microarray),通过差异杂交和DNA测序找到了疟原虫无性和有性生殖阶段基因差异表达,为抗疟药设计提供了线索。可以预测在不久的将来,人们可望在一张DNA芯片上检测几乎所有的病原微生物基因,实现真正意义上的“组合检测(profile tests)”。
    4 耐药菌株和药敏检测 据WHO报告,全球每年约有800万结核病患者,有300万人死亡,死亡人数超过了艾滋病和疟疾的总和。主要原因是菌株对不同的药物产生了抗药性(俄国80%TB对一种药物产生抗性;美国50%为多重耐药)。对每例患者进行菌株和药敏鉴定是控制TB的关键。最近,俄美两国科学家开发了具此功能的基因芯片,可使医生及早使用敏感药物。该芯片(TB Biochips)将抗性菌株的单链DNA标记后固定在玻片上,与待检TB株杂交,临床使用未见假阳性,该芯片可清洗后重复使用50次。
    (四)药物研究中的应用

从经济效益来说,最大的应用领域可能是制药厂用来开发新药。所以已经有多家制药企业介入芯片的开发。如: Incyte Pharmaaceuticals Inc.,Sequana Therapeutics,Millenium Pharmaceuticals Inc.等。对于寻找新药来说,目标之一是应用芯片可以在基因水平上寻找药物靶标。采用所谓“译码器”策略(Decoder strategy)来确定药物靶标。从而找到“导向药物”。基因芯片也被用于寻找蛋白激酶抑制物。细菌或肿瘤组织的耐药性也涉及基因改变可以用DNA芯片鉴定。
    1 新药开发 高通量的DNA芯片可发现众多的新基因和新的靶分子用于新药的设计。噬菌体展示技术可创造大量蛋白质,目前多用于抗体库的建立和筛选,进而可用于受体-配体相互作用的研究。基因组学、蛋白质组学和生物信息学(bioinformatics)将大大促进制药工业的发展。目前第一个生物分子工程药物Herceptin已用于乳癌的治疗,并获得美国FDA的批准。除肿瘤外,用分子生物工程设计的药物可用于治疗遗传病及代谢疾病、抗衰老、设计新的抗生素和工业用酶等。

同时,有时一种药物的作用是多方面的,基因芯片有助于发现一种药物的新的功能。原先设想的作用是针对某一靶标的,但在全基因或广范围筛选中却发现该药在另一方面有很强的抑制作用,从而开发成另一种新药。

2 调查药物处理细胞后基因的表达情况
  基因芯片在用来研究药物的作用机理时十分有用。Marton[40]等人利用基因芯片构建了免疫抑制性药物FK506处理酵母细胞后的基因表达图谱。发现用FK506处理的酵母细胞基因表达图谱与FK506靶标的无意义突变体相似。而用FK506去处理此突变体,发现了不同于野生型的作用机制。Clarke等[41]用基因芯片研究了肠癌患者化疗前和治疗期间肿瘤基因表达情况,发现丝裂霉素C和5-氟尿嘧啶治疗均可使糖苷合成酶和尿嘧啶-DNA糖基酶的基因表达增加。该研究提示,这类研究既有助于阐明药物的作用机制,也有助于确定药物作用的靶基因,为新药研究提供线索。
    3 对药物进行毒性评价
  应用芯片查找药物的毒性或副作用,进行毒理学研究。尤其是慢性毒性和副作用,往往涉及基因或基因表达的改变。如果药物能抑制重要基因的表达,则对它的深入研究就值得考虑。用芯片作大规模的表达研究往往可省略大量的动物试验。若某个正在筛选的潜在药物作用靶细胞得到的基因表达图谱与已知的具有毒性副作用的药物得到的基因表达图谱相似时,就要考虑是否停止药物开发(drug development)中花费巨大的临床实验阶段。Nuwaysir等[42]研制了包括涉及细胞凋亡、DNA复制和修复、氧化应激/氧化还原内稳态、过氧化物酶体增殖反应、二英/多环芳烃反应、雌激素反应、看家基因、癌基因和抑癌基因、细胞周期控制、转录因子、激酶、磷酸酶、热休克蛋白、受体、细胞色素P450等共2 090个基因的毒理芯片(ToxChip v1.0), 该芯片既可用于毒物的检测和遗传多态性的检测,又可用于受检毒物的毒作用机制的研究。最近,Holden等从人和小鼠文库中选择约600个与毒理学相关基因的cDNA克隆,制备了种属特异的毒理基因组学芯片,可研究肝脏毒性、内分泌干扰、致癌作用等毒性终点的作用机制,也可用于确定以基因表达模式为基础的化合物的毒性。

(五)基因芯片中医学领域中的应用

中医学中应用基因芯片技术,还处于初始阶段,目前主要集中以下三个方面:

1中药的研究,具体的方法,同上述药物筛选方法类似。尤其中药中众多成分中有效成分的筛选、有效药物的筛选、中药毒理学过程均被大大简化,将推动中药的迅猛发展。中药学引入基因芯片技术,将大大推动中药研究的国际化进程,为阐明中药作用机理,具有无可估量的重要意义。

2中医“证”本质的研究。中医“证”的中医药的临床治疗的核心,但“证”的本质研究一直难以有重大进展。主要因为中医理论设及到生命的整体,因而它牵涉到许多基因和蛋白质,传统的方法学无法弄清“证”的实质,而利用基因芯片技术,对不同“证”状态的基因组进行扫描,再绘出不同证的基因表达谱,通过相关分析,可望获得一些有意义的成果。也是从分子基因水平全面揭示“证”本质提供了可能。如果证本质被揭示,它可能会引起医学治疗学理论的重大革新或变化,尤其是个体化治疗方案可能重新被重视。

3针灸原理研究。针灸的原理设及全身各个部分,针灸不同方法、不同穴位、经络是否具有不同的作用,也即经脉与脏腑间的相关联系是否具有相对特异性。通过基因芯片测量不同组织基因表达的差异,判断基因表达是否具有特异性,有望解决这一长期争论不休的问题。如果心经与心脏具有相对特异性,那么针刺心经后,心脏内可能会出现某些与针刺相关的特异性基因表达,而且,这种表达只在针刺心经时出现,这些基因可能不在其它器官,如肝脏中表达。那么可以肯定地认为经脉脏腑相关是具有相对特异性的,也可以认为传统经络理论是有依据的。

另一方面,基因芯片还有助于揭示针灸的作用机制。针灸的作用是与神经内分泌免疫网络系统(NEI networks)密切相关的,它设及到细胞信使、神经递质、调质、神经肽、细胞因子、内分泌激素等多种因子,但针灸的信号是如何在细胞间和细胞内传递的过程仍不明朗,如果引入基因芯片,可以高通量的检测细胞内基因表达的时空特征,有助于了解针灸促进基因表达的特点,进而再利用蛋白组学相关技术,揭示针灸作用原理。现在已有部分工作正在进行。

    (六)其它应用

  1环境化学毒物的筛选 我们的生活环境中存在着数千种化学物质,每种物质在投入使用前必须进行人体毒性试验,传统的动物试验费用高昂,且存在着国际上关注的动物福利(animal welfare)问题。采用毒物检测芯片(Toxchips)可对环境中众多化学物质对人类基因的潜在毒性进行筛选,探查毒物“开启”或“关闭”哪些基因,研究“环境如何改变我们的基因”。NIEHS将对人类100 000个基因中的12 000个基因进行检测,弄清致癌物质对基因的改变,建立化学物质指纹库(fingerprints of chemicals),然后即可通过测定特定基因的突变与否判断新的合成物质的生物毒性。

  2体质医学的研究。体质医学关系到个体化治疗的核心问题,不同的人具有不同的体质基础,其原因与基因型可能存在一定的相关性,尤其可能与SNP关系较大,如何全面了解人的SNP差异,以及它与体质因素、疾病的易感性间关系,是值得研究的重大课题。

posted on 2007-04-28 11:10 ashura 阅读(1727) 评论(0)  编辑 收藏 引用 所属分类: Bioinformation


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2007年4月>
25262728293031
1234567
891011121314
15161718192021
22232425262728
293012345

导航

统计

常用链接

留言簿(2)

随笔分类

随笔档案

文章分类

文章档案

搜索

最新评论

阅读排行榜

评论排行榜