brent's hut

reading note 2006-12

 A:   用输入法生成器(win2000)"C:\Program Files\Windows NT\Accessories\Imegen.exe"
      会生成一个C:\WINNT\SYSTEM32\WINPY.txt文件(简称 WINPY.txt文件)
B:   WINPY.txt文件里面是    汉字拼音列表5万多条 除去词组 有汉字2万多个(含多音)
C:   汉字可以转换成某中编码可以自己构造编码方法,保证一个汉字对应一个编码 简称编码方法)
      如 byte[] uniCode = new String(temp).getBytes(“GB2312“);
      将WINPY.txt里面所有的汉字变成编码。得到汉字编码 拼音对应表(简称汉字编码表)
        XXXX0,a    //XXXX0是某个汉字的编码
        XXYX2,o    //XXYX2是某个汉字的编码
 D:  汉字编码表按编码排序,编码表按编码大小排序。
      编码表分组(方便查询 ) 而且得到分组的标志。
 E: 查询汉字拼音  将汉字进行编码(按自己的编码方法)。
//得到首字符 如'北京'  得到 'bj'            '呆子'得到  'd[a]z '  //多音
//排序  有了拼音 就可以按一些常见的排序方法排序


CString   timestr   =   "2000年04月05日";  
  int   a,b,c   ;  
  CTime   time(a,b,c,0,0,0);  

RMI for c++?:


Why You Should Turn Down That Job Offer
You will be the fifth person to have held the job in the past three years.
Why is this job vacant?
Is the turnover rate high for this position?
What's typically the next career step for those with this job?
You will clash with the corporate culture.
You will be bored -- or overwhelmed -- in the role.
You will not be able to move forward.

may not be reason enough to turn down a job:
You will earn less than you did before.
You will be in the car for two hours each day.
You will receive a “demotion” in title.

通常我们会使用CRT提供给我们的一个头文件<limits.h>中预定义宏INT_MAX, INT_MIN, UINT_MAX来定义int的最大最小值下边给出由计算得出这些值的方法,其他数据类型同理
unsigned  int  GetUnsignedIntMax()
     return   ~ 0 ;

signed  int  GetSignedIntMax()
     return  (static_cast < unsigned  int > ( ~ 0 ))  >>   1 ;

signed  int  GetSignedIntMin()
    signed  int  i  =   - 1 ;
    if  (i  &   1 )
        return   - ( (static_cast < unsigned  int > ( ~ 0 ))  >>   1  )  -   1 ;
        return   - ( (static_cast < unsigned  int > ( ~ 0 ))  >>   1  );
稍微解释一下,前两个没有什么好说的,最后一个要考虑是two complement还是one complement
如果是前者,有这样一个计算公式,~X + 1= -X,即一个数取反加一表示这个数所对应的负数

How Skype & Co. get round firewalls

The hole trick

How Skype & Co. get round firewalls

Peer-to-peer software applications are a network administrator's nightmare. In order to be able to exchange packets with their counterpart as directly as possible they use subtle tricks to punch holes in firewalls, which shouldn't actually be letting in packets from the outside world.

Increasingly, computers are positioned behind firewalls to protect systems from internet threats. Ideally, the firewall function will be performed by a router, which also translates the PC's local network address to the public IP address (Network Address Translation, or NAT). This means an attacker cannot directly adress the PC from the outside - connections have to be established from the inside.

This is of course a problem when two computers behind NAT firewalls require to talk directly to each other - if, for example, their users want to call each other using Voice over IP (VoIP). The dilemma is clear - whichever party calls the other, the recipient's firewall will decline the apparent attack and will simply discard the data packets. The telephone call doesn't happen. Or at least that's what a network administrator would expect.


But anyone who has used the popular internet telephony software Skype knows that it works as smoothly behind a NAT firewall as it does if the PC is connected directly to the internet. The reason for this is that the inventors of Skype and similar software have come up with a solution.

Naturally every firewall must also let packets through into the local network - after all the user wants to view websites, read e-mails, etc. The firewall must therefore forward the relevant data packets from outside, to the workstation computer on the LAN. However it only does so, when it is convinced that a packet represents the response to an outgoing data packet. A NAT router therefore keeps tables of which internal computer has communicated with which external computer and which ports the two have used.

The trick used by VoIP software consists of persuading the firewall that a connection has been established, to which it should allocate subsequent incoming data packets. The fact that audio data for VoIP is sent using the connectionless UDP protocol acts to Skype's advantage. In contrast to TCP, which includes additional connection information in each packet, with UDP, a firewall sees only the addresses and ports of the source and destination systems. If, for an incoming UDP packet, these match an NAT table entry, it will pass the packet on to an internal computer with a clear conscience.


The switching server, with which both ends of a call are in constant contact, plays an important role when establishing a connection using Skype. This occurs via a TCP connection, which the clients themselves establish. The Skype server therefore always knows under what address a Skype user is currently available on the internet. Where possible the actual telephone connections do not run via the Skype server; rather, the clients exchange data directly.

Let's assume that Alice wants to call her friend Bob. Her Skype client tells the Skype server that she wants to do so. The Skype server already knows a bit about Alice. From the incoming query it sees that Alice is currently registered at the IP address and a quick test reveals that her audio data always comes from UDP port 1414. The Skype server passes this information on to Bob's Skype client, which, according to its database, is currently registered at the IP address and which, by preference uses UDP port 2828.

Bob's Skype program then punches a hole in its own network firewall: It sends a UDP packet to port 1414. This is discarded by Alice's firewall, but Bob's firewall doesn't know that. It now thinks that anything which comes from port 1414 and is addressed to Bob's IP address and port 2828 is legitimate - it must be the response to the query which has just been sent.

Now the Skype server passes Bob's coordinates on to Alice, whose Skype application attempts to contact Bob at Bob's firewall sees the recognised sender address and passes the apparent response on to Bob's PC - and his Skype phone rings.

Doing the rounds

This description is of course somewhat simplified - the details depend on the specific properties of the firewalls used. But it corresponds in principle to our observations of the process of establishing a connection between two Skype clients, each of which was behind a Linux firewall. The firewalls were configured with NAT for a LAN and permitted outgoing UDP traffic.

Linux' NAT functions have the VoIP friendly property of, at least initially, not changing the ports of outgoing packets. The NAT router merely replaces the private, local IP address with its own address - the UDP source port selected by Skype is retained. Only when multiple clients on the local network use the same source port does the NAT router stick its oar in and reset the port to a previously unused value. This is because each set of two IP addresses and ports must be able to be unambiguously assigned to a connection between two computers at all times. The router will subsequently have to reconstruct the internal IP address of the original sender from the response packet's destination port.

Other NAT routers will try to assign ports in a specific range, for example ports from 30,000 onwards, and translate UDP port 1414, if possible, to 31414. This is, of course, no problem for Skype - the procedure described above continues to work in a similar manner without limitations.

It becomes a little more complicated if a firewall simply assigns ports in sequence, like Check Point's FireWall-1: the first connection is assigned 30001, the next 30002, etc. The Skype server knows that Bob is talking to it from port 31234, but the connection to Alice will run via a different port. But even here Skype is able to outwit the firewall. It simply runs through the ports above 31234 in sequence, hoping at some point to stumble on the right one. But if this doesn't work first go, Skype doesn't give up. Bob's Skype opens a new connection to the Skype server, the source port of which is then used for a further sequence of probes.

Nevertheless, in very active networks Alice may not find the correct, open port. The same also applies for a particular type of firewall, which assigns every new connection to a random source port. The Skype server is then unable to tell Alice where to look for a suitable hole in Bob's firewall.

However, even then, Skype doesn't give up. In such cases a Skype server is then used as a relay. It accepts incoming connections from both Alice and Bob and relays the packets onwards. This solution is always possible, as long as the firewall permits outgoing UDP traffic. It involves, however, an additional load on the infrastructure, because all audio data has to run through Skype's servers. The extended packet transmission times can also result in an unpleasant delay.

Use of the procedure described above is not limited to Skype and is known as "UDP hole punching". Other network services such as the Hamachi gaming VPN application, which relies on peer-to-peer communication between computers behind firewalls, use similar procedures. A more developed form has even made it to the rank of a standard - RFC 3489 "Simple Traversal of UDP through NAT" (STUN) describes a protocol which with two STUN clients can get around the restrictions of NAT with the help of a STUN server in many cases. The draft Traversal Using Relay NAT (TURN) protocol describes a possible standard for relay servers.

DIY hole punching

With a few small utilities, you can try out UDP hole punching for yourself. The tools required, hping2 and netcat, can be found in most Linux distributions. Local is a computer behind a Linux firewall (local-fw) with a stateful firewall which only permits outgoing (UDP) connections. For simplicity, in our test the test computer remote was connected directly to the internet with no firewall.

Firstly start a UDP listener on UDP port 14141 on the local/1 console behind the firewall:

local/1# nc -u -l -p 14141

An external computer "remote" then attempts to contact it.

remote# echo "hello" | nc -p 53 -u local-fw 14141

However, as expected nothing is received on local/1 and, thanks to the firewall, nothing is returned to remote. Now on a second console, local/2, hping2, our universal tool for generating IP packets, punches a hole in the firewall:

local/2# hping2 -c 1 -2 -s 14141 -p 53 remote

As long as remote is behaving itself, it will send back a "port unreachable" response via ICMP - however this is of no consequence. On the second attempt

remote# echo "hello" | nc -p 53 -u local-fw 14141

the netcat listener on console local/1 then coughs up a "hello" - the UDP packet from outside has passed through the firewall and arrived at the computer behind it.

Network administrators who do not appreciate this sort of hole in their firewall and are worried about abuse, are left with only one option - they have to block outgoing UDP traffic, or limit it to essential individual cases. UDP is not required for normal internet communication anyway - the web, e-mail and suchlike all use TCP. Streaming protocols may, however, encounter problems, as they often use UDP because of the reduced overhead.

Astonishingly, hole punching also works with TCP. After an outgoing SYN packet the firewall / NAT router will forward incoming packets with suitable IP addresses and ports to the LAN even if they fail to confirm, or confirm the wrong sequence number (ACK). Linux firewalls at least, clearly fail to evaluate this information consistently. Establishing a TCP connection in this way is, however, not quite so simple, because Alice does not have the sequence number sent in Bob's first packet. The packet containing this information was discarded by her firewall.

《Effective Java》
1,int result = 17;
2,对每个重要数据成员(Equals中用到的),计算int c:
boolean : c = f?0:1;
byte,int,char,short : c = (int)f
long c = (int)(f^(f>>>32));
float : c = Float.floatToIntBits(f);
double : long l = (int)(f^(f>>>32));c = (int)(l^(l>>>32));
其它reference : c = f.hashCode();
3,result = 37*result+c;


  正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串、将匹配的子串做替换或者从某个串中取出符合某个条件的子串等。
  列目录时, dir *.txt或ls *.txt中的*.txt就是一个正则表达式,因为这里*与正则式的*的含义是不同的。



  是由普通字符(例如字符 a 到 z)以及特殊字符(称为元字符)组成的文字模式。正则表达式作为一个模板,将某个字符模式与所搜索的字符串进行匹配。




字符 含义
\cx 匹配由x指明的控制字符。例如, \cM 匹配一个 Control-M 或回车符。x 的值必须为 A-Z 或 a-z 之一。否则,将 c 视为一个原义的 'c' 字符。
\f 匹配一个换页符。等价于 \x0c 和 \cL。
\n 匹配一个换行符。等价于 \x0a 和 \cJ。
\r 匹配一个回车符。等价于 \x0d 和 \cM。
\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。
\t 匹配一个制表符。等价于 \x09 和 \cI。
\v 匹配一个垂直制表符。等价于 \x0b 和 \cK。


  所谓特殊字符,就是一些有特殊含义的字符,如上面说的"*.txt"中的*,简单的说就是表示任何字符串的意思。如果要查找文件名中有*的文件,则需要对*进行转义,即在其前加一个\。ls \*.txt。正则表达式有以下特殊字符。
$匹配输入字符串的结尾位置。如果设置了 RegExp 对象的 Multiline 属性,则 $ 也匹配 '\n' 或 '\r'。要匹配 $ 字符本身,请使用 \$。
( )标记一个子表达式的开始和结束位置。子表达式可以获取供以后使用。要匹配这些字符,请使用 \( 和 \)。
*匹配前面的子表达式零次或多次。要匹配 * 字符,请使用 \*。
+匹配前面的子表达式一次或多次。要匹配 + 字符,请使用 \+。
.匹配除换行符 \n之外的任何单字符。要匹配 .,请使用 \。
[ 标记一个中括号表达式的开始。要匹配 [,请使用 \[。
?匹配前面的子表达式零次或一次,或指明一个非贪婪限定符。要匹配 ? 字符,请使用 \?。
\将下一个字符标记为或特殊字符、或原义字符、或向后引用、或八进制转义符。例如, 'n' 匹配字符 'n'。'\n' 匹配换行符。序列 '\\' 匹配 "\",而 '\(' 则匹配 "("。
^匹配输入字符串的开始位置,除非在方括号表达式中使用,此时它表示不接受该字符集合。要匹配 ^ 字符本身,请使用 \^。
{标记限定符表达式的开始。要匹配 {,请使用 \{。
|指明两项之间的一个选择。要匹配 |,请使用 \|。



字符 描述
* 匹配前面的子表达式零次或多次。例如,zo* 能匹配 "z" 以及 "zoo"。* 等价于{0,}。
+ 匹配前面的子表达式一次或多次。例如,'zo+' 能匹配 "zo" 以及 "zoo",但不能匹配 "z"。+ 等价于 {1,}。
? 匹配前面的子表达式零次或一次。例如,"do(es)?" 可以匹配 "do" 或 "does" 中的"do" 。? 等价于 {0,1}。
{n} n 是一个非负整数。匹配确定的 n 次。例如,'o{2}' 不能匹配 "Bob" 中的 'o',但是能匹配 "food" 中的两个 o。
{n,} n 是一个非负整数。至少匹配n 次。例如,'o{2,}' 不能匹配 "Bob" 中的 'o',但能匹配 "foooood" 中的所有 o。'o{1,}' 等价于 'o+'。'o{0,}' 则等价于 'o*'。
{n,m} m 和 n 均为非负整数,其中n <= m。最少匹配 n 次且最多匹配 m 次。例如,"o{1,3}" 将匹配 "fooooood" 中的前三个 o。'o{0,1}' 等价于 'o?'。请注意在逗号和两个数之间不能有空格。






  对一个正则表达式模式或部分模式两边添加圆括号将导致相关匹配存储到一个临时缓冲区中,所捕获的每个子匹配都按照在正则表达式模式中从左至右所遇到的 内容存储。存储子匹配的缓冲区编号从 1 开始,连续编号直至最大 99 个子表达式。每个缓冲区都可以使用 '\n' 访问,其中 n 为一个标识特定缓冲区的一位或两位十进制数。
  可以使用非捕获元字符 '?:', '?=', or '?!' 来忽略对相关匹配的保存。


操作符 描述
\ 转义符
(), (?:), (?=), [] 圆括号和方括号
*, +, ?, {n}, {n,}, {n,m} 限定符
^, $, \anymetacharacter 位置和顺序
| “或”操作


字符 描述
\ 将下一个字符标记为一个特殊字符、或一个原义字符、或一个 向后引用、或一个八进制转义符。例如,'n' 匹配字符 "n"。'\n' 匹配一个换行符。序列 '\\' 匹配 "\" 而 "\(" 则匹配 "("。
^ 匹配输入字符串的开始位置。如果设置了 RegExp 对象的 Multiline 属性,^ 也匹配 '\n' 或 '\r' 之后的位置。
$ 匹配输入字符串的结束位置。如果设置了RegExp 对象的 Multiline 属性,$ 也匹配 '\n' 或 '\r' 之前的位置。
* 匹配前面的子表达式零次或多次。例如,zo* 能匹配 "z" 以及 "zoo"。* 等价于{0,}。
+ 匹配前面的子表达式一次或多次。例如,'zo+' 能匹配 "zo" 以及 "zoo",但不能匹配 "z"。+ 等价于 {1,}。
? 匹配前面的子表达式零次或一次。例如,"do(es)?" 可以匹配 "do" 或 "does" 中的"do" 。? 等价于 {0,1}。
{n} n 是一个非负整数。匹配确定的 n 次。例如,'o{2}' 不能匹配 "Bob" 中的 'o',但是能匹配 "food" 中的两个 o。
{n,} n 是一个非负整数。至少匹配n 次。例如,'o{2,}' 不能匹配 "Bob" 中的 'o',但能匹配 "foooood" 中的所有 o。'o{1,}' 等价于 'o+'。'o{0,}' 则等价于 'o*'。
{n,m} m 和 n 均为非负整数,其中n <= m。最少匹配 n 次且最多匹配 m 次。例如,"o{1,3}" 将匹配 "fooooood" 中的前三个 o。'o{0,1}' 等价于 'o?'。请注意在逗号和两个数之间不能有空格。
? 当 该字符紧跟在任何一个其他限制符 (*, +, ?, {n}, {n,}, {n,m}) 后面时,匹配模式是非贪婪的。非贪婪模式尽可能少的匹配所搜索的字符串,而默认的贪婪模式则尽可能多的匹配所搜索的字符串。例如,对于字符串 "oooo",'o+?' 将匹配单个 "o",而 'o+' 将匹配所有 'o'。
. 匹配除 "\n" 之外的任何单个字符。要匹配包括 '\n' 在内的任何字符,请使用象 '[.\n]' 的模式。
(pattern) 匹配 pattern 并获取这一匹配。所获取的匹配可以从产生的 Matches 集合得到,在VBScript 中使用 SubMatches 集合,在JScript 中则使用 $0…$9 属性。要匹配圆括号字符,请使用 '\(' 或 '\)'。
(?:pattern) 匹 配 pattern 但不获取匹配结果,也就是说这是一个非获取匹配,不进行存储供以后使用。这在使用 "或" 字符 (|) 来组合一个模式的各个部分是很有用。例如, 'industr(?:y|ies) 就是一个比 'industry|industries' 更简略的表达式。
(?=pattern) 正 向预查,在任何匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如,'Windows (?=95|98|NT|2000)' 能匹配 "Windows 2000" 中的 "Windows" ,但不能匹配 "Windows 3.1" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。
(?!pattern) 负 向预查,在任何不匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如'Windows (?!95|98|NT|2000)' 能匹配 "Windows 3.1" 中的 "Windows",但不能匹配 "Windows 2000" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始
x|y 匹配 x 或 y。例如,'z|food' 能匹配 "z" 或 "food"。'(z|f)ood' 则匹配 "zood" 或 "food"。
[xyz] 字符集合。匹配所包含的任意一个字符。例如, '[abc]' 可以匹配 "plain" 中的 'a'。
[^xyz] 负值字符集合。匹配未包含的任意字符。例如, '[^abc]' 可以匹配 "plain" 中的'p'。
[a-z] 字符范围。匹配指定范围内的任意字符。例如,'[a-z]' 可以匹配 'a' 到 'z' 范围内的任意小写字母字符。
[^a-z] 负值字符范围。匹配任何不在指定范围内的任意字符。例如,'[^a-z]' 可以匹配任何不在 'a' 到 'z' 范围内的任意字符。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
\B 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
\cx 匹配由 x 指明的控制字符。例如, \cM 匹配一个 Control-M 或回车符。x 的值必须为 A-Z 或 a-z 之一。否则,将 c 视为一个原义的 'c' 字符。
\d 匹配一个数字字符。等价于 [0-9]。
\D 匹配一个非数字字符。等价于 [^0-9]。
\f 匹配一个换页符。等价于 \x0c 和 \cL。
\n 匹配一个换行符。等价于 \x0a 和 \cJ。
\r 匹配一个回车符。等价于 \x0d 和 \cM。
\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。
\t 匹配一个制表符。等价于 \x09 和 \cI。
\v 匹配一个垂直制表符。等价于 \x0b 和 \cK。
\w 匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]'。
\W 匹配任何非单词字符。等价于 '[^A-Za-z0-9_]'。
\xn 匹配 n,其中 n 为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如,'\x41' 匹配 "A"。'\x041' 则等价于 '\x04' & "1"。正则表达式中可以使用 ASCII 编码。.
\num 匹配 num,其中 num 是一个正整数。对所获取的匹配的引用。例如,'(.)\1' 匹配两个连续的相同字符。
\n 标识一个八进制转义值或一个向后引用。如果 \n 之前至少 n 个获取的子表达式,则 n 为向后引用。否则,如果 n 为八进制数字 (0-7),则 n 为一个八进制转义值。
\nm 标 识一个八进制转义值或一个向后引用。如果 \nm 之前至少有 nm 个获得子表达式,则 nm 为向后引用。如果 \nm 之前至少有 n 个获取,则 n 为一个后跟文字 m 的向后引用。如果前面的条件都不满足,若 n 和 m 均为八进制数字 (0-7),则 \nm 将匹配八进制转义值 nm。
\nml 如果 n 为八进制数字 (0-3),且 m 和 l 均为八进制数字 (0-7),则匹配八进制转义值 nml。
\un 匹配 n,其中 n 是一个用四个十六进制数字表示的 Unicode 字符。例如, \u00A9 匹配版权符号 (?)。


/\b([a-z]+) \1\b/gi一个单词连续出现的位置
/(\w+):\/\/([^/:]+)(:\d*)?([^# ]*)/ 将一个URL解析为协议、域、端口及相对路径
/^(?:Chapter|Section) [1-9][0-9]{0,1}$/定位章节的位置
/Windows(?=95 |98 |NT )/可匹配Windows95或Windows98或WindowsNT,当找到一个匹配后,从Windows后面开始进行下一次的检索匹配。

posted on 2006-12-03 00:28 brent 阅读(603) 评论(0)  编辑 收藏 引用 所属分类: reading note

网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理